Math/CS $103 \quad$ Professor: Padraic Bartlett

Week 2 UCSB 2013

Hello! This mini-lecture is designed to introduce the dot product. We do this below:

1 Dot Products

Homework 5 is basically centered around the dot product operation, defined here:
Definition. Take two vectors $\left(x_{1}, \ldots x_{n}\right),\left(y_{1}, \ldots y_{n}\right) \in \mathbb{R}^{n}$. Their dot product is simply the sum

$$
x_{1} y_{1}+x_{2} y_{2}+\ldots x_{n} y_{n}
$$

In homework 5, we asked whether we could find sets of vectors or sequences that had various properties with respect to the dot product: for example, we asked for sets of vectors that had pairwise 0 dot product, pairwise negative dot product, "small" dot product, etc.

In this talk, we instead focus on a geometric interpretation of the dot product, as given by the following theorem. Before stating it, we make the following definition: given a vector \vec{x}, we let $\|\vec{x}\|$ denote the length of this vector. If this vector \vec{x} is a vector in \mathbb{R}^{3} of the form (a, b, c), this length is simply the quantity $\sqrt{a^{2}+b^{2}+c^{2}}$, which you can see by using the Pythagorean theorem. (If you have questions on this part, contact me!)

With this stated, we can move on to our theorem:
Theorem. Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ be a pair of vectors in \mathbb{R}^{3}. Then $\vec{x} \cdot \vec{y}$ is equal to

$$
\|\vec{x}\| \cdot\|\vec{y}\| \cos (\theta)
$$

where θ is the angle between \vec{x} and \vec{y}.
Proof. Essentially, this is a consequence of the Law of Cosines, a trig rule you may have ran into in high school. We restate it here:
Proposition. (Law of Cosines) Given the triangle

we have the equality

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (\gamma)
$$

To see how this applies to our situation, consider the following picture:

If we apply the law of cosines to this image, we get

$$
\|\vec{x}-\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\|\vec{x}\|\|\vec{y}\| \cos (\gamma) .
$$

However, we know that the length of $\vec{x}-\vec{y}$ is just the length of the vector $\left(x_{1}-y_{1}, x_{2}-\right.$ $\left.y_{2}, x_{3}-y_{3}\right)$, which is

$$
\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y^{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2}} .
$$

Therefore, if we square this, we get

$$
\begin{aligned}
\|\vec{x}-\vec{y}\|^{2} & =\left(x_{1}^{2}-2 x_{1} y_{1}+y_{1}^{2}\right)+\left(x_{2}^{2}-2 x_{2} y_{2}+y_{2}^{2}\right)+\left(x_{3}^{2}-2 x_{3} y_{3}+y_{3}^{2}\right) \\
& =\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)-2\left(x_{1} y_{2}+x_{2} y_{2}+x_{3} y_{3}\right) \\
& =\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2 \vec{x} \cdot \vec{y} .
\end{aligned}
$$

If we plug this into our law of cosines formula, we get

$$
\begin{aligned}
\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2 \vec{x} \cdot \vec{y} & =\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\|\vec{x}\|\|\vec{y}\| \cos (\gamma) \\
\Rightarrow \vec{x} \cdot \vec{y} & =\|\vec{x} \mid\| \vec{y} \| \cos (\gamma) .
\end{aligned}
$$

So we've proven our claim!

