
Math/CS 103 Professor: Padraic Bartlett

Lecture 4: Basis and Dimension

Week 1 UCSB 2013

Hello! This mini-lecture is designed to introduce the concepts of basis and dimension.
We do this below:

1 Basis and Dimension

On your third problem set, you dealt with a number of questions that asked you if you
could create submarines capable of visiting any point in the ocean (usually given some
set of constraints.) If we think of the ocean as simply R3, and as our submarines as just
collections of vectors (corresponding to their engines,) these questions can be abstracted to
the following kind of problem:

“Given the constraint (blah), can we find a collection of vectors that satisfy this
constraint that span R3?”

A related question to this was the idea of minimality, which we also studied on this
problem set. If you remove the submarine framing, question 4 essentially asked the following:

“What is the smallest number of vectors you need to span R3?”

Variations on these two questions come up often in linear algebra! Consequently, we
came up with the following terms to work with these ideas:

Definition. Let S be some collection of vectors in Rm. We say that this collection of
vectors is a basis for Rm if the following properties hold:

1. The span of S is all of Rm.

2. The collection S is linearly independent.

In this sense, we’re asking that S both spans the entire space that we’re considering,
and also that no vector in S is “superfluous.”

This is because if S was a linearly dependent set, then there would be some set of
vectors ~v1, . . . ~vn ∈ S and coefficients a1, . . . an not all zero such that

a1 ~v1 + a2 ~v2 + . . . + an ~vn = ~0.

Consequently, we could solve this equation for ~v1 and get

~v1 = −a2
a1

~v2 −
a3
a1

~v2 − . . .
an
a1

~vn := ?.

This is a way to create the vector ~v1 without using the vector ~v1 itself! Therefore, we
know that the span of S is the same thing as the span of S without the vector ~v1: this is
because anything we can make with linear combinations of elements of S, we can do without
~v1, by just replacing every copy of ~v1 with ?. In other words, the vector ~v1 is superfluous:
we can do without it!

1



Definition. The dimension of Rn, or indeed any vector space, is the number of elements
needed to create a basis for the space.

We study a quick example to illustrate the ideas here:

Question. What is the dimension of Rn? Can you find a basis for Rn? Can you find a
basis for, say, R2 and R3 made out of vectors that have nonzero x, y and z coördinates?

Answer. For the moment, let’s look at R2. We claim that the pair of vectors (1, 0) and
(0, 1) form a basis for R2. To see this, simply notice that we can express any vector in R2 as
x(1, 0)+y(0, 1), so it spans the entire space. Furthermore, if we have x(1, 0)+y(0, 1) = (0, 0),
we would have x = 0 = y. Therefore, this pair of vectors is linearly independent as well.

In general: for Rn, the vectors (1, 0, 0, . . . 0), (0, 1, 0, 0 . . . 0), . . . (0, 0, . . . 0, 1) form a basis
for Rn, for the same reasons: there is no combination of these vectors that sums to 0 without
having all of the coefficients equal to 0, and we can create any vector (a1, . . . an) by summing
a1(1, 0 . . . 0) + . . . an(0, . . . 0, 1).

Therefore, the dimension of Rn is n, which is reassuring.
We now consider the second part of our question: can we make a basis for Rn where

none of the components of the vectors in our basis are 0?
Again, we start with R2. Here, we can do this: try (1, 1) and (1,−1). We want to

combine these two vectors to get any element of the form (x, y). To do this, we simply solve
the equations a(1, 1) + b(1,−1) = (x, y) for a, b:

a + b = x

a− b = y

⇒ 2a = x + y, by adding these two equations.

⇒ a =
x + y

2
.

⇒ x + y

2
+ b = x, by substituting in for a in the first equation.

⇒ b =
x− y

2
.

Therefore, we can create any vector with this pair, via the linear combination

x + y

2
(1, 1) +

x− y

2
(1, 1) = (x, y).

Furthermore, we know that this is a basis. To see this, notice that if we had (x, y) =
(0, 0), our earlier work has just shown that a = x+y

2 = 0 and b = x−y
2 = 0. Therefore, the

only linear combination of our two vectors that yields (0, 0) has identically zero coefficients,
which is the definition of linear independence.

(There are lots of solutions here! This was just a pair of vectors I wanted to try because
they looked interesting. The same holds for our next example in R3: there are many
solutions, and I have picked these basically at random.)
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For R3, we try (1, 1, 1), (1,−1,−1), (1, 1,−1). Again, we want to combine these two
vectors to get any element of the form (x, y, z). To do this, we simply solve the equations
a(1, 1, 1) + b(1,−1,−1) + c(1, 1,−1) = (x, y, z) for a, b, c:

a + b + c = x

a− b + c = y

a− b− c = z

⇒ 2a = x + z, by adding the first and third equations.

⇒ a =
x + z

2
.

Also, 2a + 2c = x + y, by adding the first two equations.

⇒ x + z + 2c = x + y.

⇒ c =
y − z

2
.

⇒ x + z

2
+ b +

y − z

2
= x, by substituting a, b in the first equation.

⇒ b =
x− y

2
.

Therefore, we can create any vector with this triple, via the linear combination

x + z

2
(1, 1, 1) +

x− y

2
(1,−1, 1) +

y − z

2
(1,−1,−1) = (x, y, z).

Furthermore, we know that this is a basis. To see this, notice that if we had (x, y, z) =
(0, 0, 0), our earlier work has just shown that a = x+z

2 = 0, b = x−y
2 = 0 and c = y−z

2 = 0.
Therefore, the only linear combination of our three vectors that yields (0, 0, 0) has identically
zero coefficients, which is the definition of linear independence.
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