
Math/CS 103 Professor: Padraic Bartlett

Lecture 2: Vector Spaces

Week 1 UCSB 2013

Hello! This mini-lecture is designed to introduce the concepts of vector spaces and
span, a pair of concepts we studied on the past homework.

1 Vector Spaces: Examples

As often happens in mathematics, the concept of a vector space is one that people usually
understand examples of long before they run into their proper definition. Most students run
into the vector spaces R2 and R3 in their early geometry/precalc classes, which (due to their
remarkably visual presentations) are often easier to deal with than the abstract definition
of a vector space itself. For completeness’ sake, we redefine these two vector spaces here:

Definition. The vector space R2 consists of the collection of all pairs (a, b), where a, b are
allowed to be any pair of real numbers. For example, (2,−3), (2, π), (−1, 1), and (

√
2,
√

2)
are all examples of vectors in R2. We typically visualize these vectors as arrows in the
xy-plane, with the tail of the arrow starting at the origin1 and the tip of the arrow drawn at
the point in the plane with xy-coördinates given by the vector. We draw four such vectors
here:

x

y

(2,-3)

(2,π)

(-1,1) (√2,	√2)

Given a pair of vectors in R2, we can add them together. We do this component-wise,
i.e. if we have two vectors (a, b) and (c, d), their sum is the vector (a+c, b+d). For example,
the sum of the vectors (3,−2) and (2, 3) is the vector (5, 1).

1The origin is the point (0, 0) in the plane.
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You can visualize this by taking the arrow corresponding to the first vector that we add,
and “translating” this arrow over to the start of the second vector; if you travel along the
first vector and then continue along this second translated vector, you arrive at some point
in the plane. The arrow connecting the origin to this point is the vector given by the sum
of these two vectors! If this seems hard to understand, the diagram below may help some:

x

y

(3-2)

(2,3)

(2,3)+(3,-2)	=	(5,1)

We can also scale a vector in R2 by any real number a. Intuitively, this corresponds to
the concept of “stretching:” the vector (x, y) scaled by a, denoted a(x, y), is the quantity
(ax, ay). For example, 2(1, 3) = (2, 6), and is essentially what happens if we “double” the
vector (1, 3). We illustrate this below:

x

y

(1,3)

2(1,3)	=	(2,6)

We can define R3 in a similar fashion:
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Definition. The vector space R3 consists of the collection of all pairs (a, b, c), where a, b, c
are allowed to be any triple of real numbers. For example, (0, 1, 2), (3, 0, 2), and (3, 2, 0)
are all examples of vectors in R3. We typically visualize these vectors as arrows in three-
dimensional xyz-space, with the tail of the arrow starting at the origin and the tip of the
arrow drawn at the point in the plane with xyz-coördinates given by the vector. We draw
three such vectors here:

x y

z

(0,1,2)

(3,0,2)

(3,2,0)

Again, given a pair of vectors in R3, we can add them together. We do this component-
wise, i.e. if we have two vectors (a, b, c) and (d, e, f), their sum is the vector (a+d, b+e, c+f).
For example, the sum of the vectors (3,−2, 0) and (2, 1, 2) is the vector (5,−1, 2). We can
also scale a vector in R3 by any real number a: the vector (x, y, z) scaled by a, denoted
a(x, y, z), is the quantity (ax, ay, az). These operations can be visualized in a similar fashion
to the pictures we drew for R2:

x y

z

(-3,0,1)+(3,2,0)	

(-3,0,1)

(3,2,0)

=	(0,2,1)

=(4,0,2) (2,0,1)
2(2,0,1)	
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You can generalize these examples to Rn, the vector space made out of n-tuples of real
numbers: i.e. elements of R4 would be things like (π, 2, 2, 1) or (−1, 2, 1,−1). In general,
there are many other kinds of vector spaces — essentially, anything with the two operations
“addition” and “scaling” is a vector space (provided that those operations are well-behaved
in certain specific ways.) For now, though, let’s work with just Rn, and specifically R2 and
R3: these are the two vector spaces that we have the easiest time with visualizing, and will
allow us to begin to grapple with most of the concepts we want to focus on in the next few
weeks.

2 Vector Space Concepts: Span

Using the language of vector spaces, it’s not too hard to see that the problems on the last
homework set were all mostly variations on the following theme:

“Consider some set of vectors {~v1, ~v2, . . . ~vn} in R3, along with some point ~x ∈ R3.
Can you scale and add these ~Ai-vectors (given some set of restrictions) together
in a way to get ~x?”

This class of questions is a frequently-occurring one in mathematics, so much so that
mathematicians have invented a concept, called span, to describe this idea:

Definition. Take some collection of vectors {~v1, ~v2, . . . ~vn}, all from some vector space2 Rn.
Call this collection C. The span of C is the collection of all vectors that we can create by
scaling and combining elements of C. In other words,

span(C) = {~w ∈ Rn| there are constants a1, . . . an ∈ R such that ~w = a1 ~v1 + a2 ~v2 + . . .+ an ~vn}.

Relatedly, we call elements of the form a1 ~v1 + a2 ~v2 + . . .+ an ~vn linear combinations
of the elements of C.

In this sense, the problems on the first homework set were asking you whether certain
points lay in the span (or restricted notions of span) of various sets of vectors. We provide
a pair of sample calculations of spans, to help them make sense formally:

Question. Consider the collection S = {(1, 1, 1), (0, 1, 1), (1, 1, 0)}. Is the vector (3, 4, 5) in
the span of this collection?

Answer. Notice that because (1, 1, 1) and (0, 1, 1) are in our collection S, their difference

(1, 1, 1)− (0, 1, 1) = (1, 0, 0)

is also in our set. Similarly, for any x ∈ R, we can generate the element (x, 0, 0) via the
following linear combination:

x(1, 1, 1)− x(0, 1, 1) = (x, 0, 0)

2This definition still holds for other vector spaces than Rn, and we will revisit it when we get to some
other examples of vector spaces.
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In general, if an element ~v is in the span of some collection of vectors, any scalar multiple
of ~v is also in this span, because we can just scale all of the elements used to make ~v! As
well, if two elements ~v, ~w are in the span of a set, their sum is in the span of the set, because
we can just sum all of the elements used to create ~v and ~w together. (If you don’t see why
these statements are true, prove them!)

Notice as well that the elements

(1, 1, 1)− (1, 1, 0) = (0, 0, 1)

and

(1, 1, 0) + (0, 1, 1)− (1, 1, 1) = (0, 1, 0)

are also in our span; consequently, the elements (0, y, 0) and (0, 0, z) are in our set, for
any y, z ∈ R. In summary, we’ve shown that for any x, y, z ∈ R, we have (x, 0, 0), (0, y, 0),
and (0, 0, z) in the span of S. Therefore, by summing these three elements together, we’ve
actually shown that for any x, y, z ∈ R, (x, y, z) is in the span of S. In other words, the
span of S is all of R3, and therefore it contains all vectors in R3.

In particular, it contains (3, 4, 5).

Question. Consider the collection S = {(9, 8, 7), (6, 5, 4), (3, 2, 1)}. Is the vector (6, 7, 8) in
the span of this collection?

Answer. First, notice that the difference between (9, 8, 7) and (6, 5, 4) is (3, 3, 3), so (3, 3, 3)
is in our set. Moreover, we can use this observation to see that because

(6, 5, 4)− (3, 3, 3) = (3, 2, 1),

that we can create the element (3, 2, 1) using only multiples of (9, 8, 7) and (6, 5, 4). (In
specific, we just showed that it was equal to 2(6, 5, 4)− (9, 8, 7).)

Therefore, the element (3, 2, 1) is in some sense “irrelevant” to the span of our collection:
if we can recreate it with the elements (9, 8, 7) and (6, 5, 4), there’s really no need to consider
it in addition to these two elements. In other words, the span of just (9, 8, 7) and (6, 5, 4) on
their own is the same as the span of {(9, 8, 7), (6, 5, 4), (3, 2, 1)}! (Again, if this is unclear,
prove this claim.)

This simplifies things: we know that the span of our set S is just the collection of all
vectors of the form

(9a+ 6b, 8a+ 5b, 7a+ 4b),

for a, b ∈ R. We want to know if (6, 7, 8) is in this collection. If it is, then there must be
some a, b such that

(9a+ 6b, 8a+ 5b, 7a+ 4b) = (6, 7, 8);

i.e. some a, b such that

9a+ 6b = 6

8a+ 5b = 7

7a+ 4b = 8.
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Our first equation,

9a+ 6b = 6,

becomes

b = 1− 3

2
a

after solving for b in terms of a.
If we plug this into our third equation, we get

7a+ 4

(
1− 3

2
a

)
= 8,

which simplifies to

7a+ 4− 6a = 8,

i.e. a = 4. Plugging a = 4 into this third equation again, but leaving the b in this time,
gives us

7 · 4 + 4b = 8,

which forces b = −5.
Plugging a = 4, b = −5 in each of the above equations works. Consequently, if we put

these three equations back together into one vector, we’ve just shown that

4(9, 8, 7)− 5(6, 5, 4) = (6, 7, 8).

Therefore, (6, 7, 8) is in the span of our set.
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