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On our last problem set, we introduced the “positive determinant” det+, calculated a
number of examples of this object, and proved a number of properties about this determi-
nant! We restate those properties along with their proofs here, with some useful additional
notes. Note that the proofs here are simply the ones I came up with; there are many
many proofs of these properties, each of which have their own virtues! I simply made these
because I like them. We’ll likely be discussing these proofs through Wednesday, so don’t
worry if they seem odd now!

After these proofs, we introduce some new properties on the determinant, that make it
much easier to calculate!

1 Background on Elementary Matrices

Remember elementary matrices? They’re still really important. In particular, we proved
the following theorem about them like two weeks ago:

Theorem 1. Take any n × n matrix A. Suppose that we are looking at the composition
E ·A, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• if E = Emultiply entry k by λ, then E ·A would be the matrix A with its k-th row multipled
by λ.

• if E = Eswitch entry k and entry l, then E ·A would be the matrix A with its k-th and l-th
rows swapped, and

• if E = Eadd λ copies of entry k to entry l, then E · A would be the matrix A with λ copies
of its k-th row added to its l-th row.

There is a converse theorem to this about products of the form A · E, whose proof is
identical:

Theorem 2. Take any n × n matrix A. Suppose that we are looking at the composition
A ·E, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• if E = Emultiply entry k by λ, then A · E would be the matrix A with its k-th column
multipled by λ.

• if E = Eswitch entry k and entry l, then A ·E would be the matrix A with its k-th and l-th
columns swapped, and

• if E = Eadd λ copies of entry k to entry l, then A · E would be the matrix A with λ copies
of its k-th column added to its l-th column.
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This observation is really useful to us! Another observation, which we proved for 3× 3
matrices on the HW, was the following:

Theorem. Let A be a n × n matrix. Then there is some string of elementary matrices
E1, . . . Ek such that

A = E1 · . . . · Ek

The proof is kinda tedious, and mostly identical to the 3× 3 case. We put a proof of it
at the end of the notes; but for now, simply believe it to be true.

Using these, we can start our proofs from the HW:

2 Elementary Matrices and the Determinant, Round 1

We start by making the following observations:

Theorem. Take any matrix A. Look at the matrix A ·E, where E is an elementary matrix
of the form

Emultiply entry k by λ.

Then

det +(A · E) = |λ| · det +(A).

Proof. In class/notes, we said that to find the volume of an arbitrary parallelotope, we do
the following:

1. First, pick one of the vectors in our parallotope, and calculate its length: this is the
“base.”

2. Then, pick a vector we haven’t yet studied, and find its “height” over the vector we
picked earlier by constructing the “orth” vector from our past class, and studying its
length.

3. Pick a third vector, and again find its “height” over the previous two vectors by
constructing the “orth” vector over those earlier two vectors.

4. Repeat this process until we run out of vectors. The product of the base with all of
these heights gives us the volume!

Now, make the following observations:

• The positive determinant of A is just the volume of the parallelotope spanned by the
column vectors of A.

• The matrix A · E is just the matrix A with its k-th column multiplied by λ.

• Therefore, the positive determinant of A·E is the volumne of the parallelotope spanned
by the column vectors of A, where one of them is multiplied by λ.
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• If we pick the λ-multiple as our first vector when calculating the volume, it is clear
that the length of the base is scaled by |λ|, and the length of any height vector is
unchanged (as those are calculated by looking at things orthogonal to the base, and
therefore do not care about the length of the base!)

• Therefore, the volume of A · E is just the volume of A scaled by |λ|.

Done!

Theorem. Take any matrix A. Look at the matrix A ·E, where E is an elementary matrix
of the form

Eswitch entry k and entry l.

Then

det +(A · E) = det +(A).

Proof. This is like the above proof, but even easier. First, notice that the matrix A·E is just
the matrix A, but with two columns swapped. Therefore, the volume of the parallelepiped
spanned by the columns of A · E is the same as the volume of the parallelepiped spanned
by the columns of A, because they’re both the volumes of the same paralellepiped!

Theorem. Take any matrix A. Look at the matrix A ·E, where E is an elementary matrix
of the form

Eadd λ copies of entry k to entry l.

Then

det +(A · E) = det +(A).

Proof. This is also like the above proof, but slightly harder. Specifically, calculate the
volume of the parallelepiped spanned by A · E, simultaneously with the volume of the
parallelepiped spanned by A’s columns, in the following way:

1. First, pick column k to be the base in both cases. Note that both matrices have the
same k-th column (as the only column at which they differ is the j0th column), and
therefore that the length here is the same.

2. Now, pick column j to be the next vector we take in both cases. We are interested in
the “height” of this column vector over the k-th column vector.

Notice that because the j-th column vector of A ·E is just the j-th column of A, plus
λ copies of the k-th column, we have that

orth
(

(the j-th column of A · E) onto (the k-th column of A)
)

=orth
(

(the j-th column of A) onto (the k-th column of A)
)
.

3



This is because adding copies of the k-th column to a vector doesn’t change the
“amount” of that vector that is orthogonal to that k-th column! (Basically, imagine
adding λ copies of a vector ~w to another vector ~v. This directly increases the quantity
proj(~v onto ~w) by λ~v; therefore, when we form the vector orth(~v onto ~w) = ~v−proj(~v
onto ~w), we subtract those copies off again!

Therefore, the height of the k-th column over our j-th column is the same in both
cases.

3. Now, notice that the spans of the k, j-th columns in the matrices A,A · E are the
same in both cases, as they both consist of all multiples of the k-th and j-th columns!
Therefore, the “height” of any other vector over these two is unchanged.

Consequently, because the lengths of the base and of the heights are unchanged at each
step, these two paralleletopes have the same volume.

These three proofs are all very similar to question 2 on the HW, which asked you
what happened to the volume of various parallelotopes after elementary matrices were
applied to them! However, question two is really asking you for the volume of E · A, for
an arbitrary elementary matrix E and a paralleotope spanned by the columns of A; this is
subtly different!

To answer this, then, you need the answer to question 1:

3 The Transpose and the Determinant

The transpose is the following object:

Definition. Take an n× n matrix A of the form
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


Define the transpose of this matrix, AT , as the matrix where we “flip” A over its top
left-bottom right diagonal, i.e. where we switch the rows and columns of A, i.e. where we
put the entry aji in the (i, j)-th entry of AT , i.e.

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1n an2 . . . ann


First, a useful warm-up result:

Theorem. Take any string of matrices A1, . . . An, such that A1 · . . . · An is well-defined.
Then

(A1 ·A2 · . . . ·An)T = ATn ·ATn−1 · . . . ·AT2 ·AT1 .
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Proof. First, notice that for any two n×nmatricesA,B, we have (A·B)T = (BT )·(AT ). This
is not too hard to show: simply notice that due to the definition of matrix multiplication,
the entry in (i, j) of A ·B is

(the i-th row of A) · (the j-th column of B),

which means that the (j, i)-th entry of (A ·B)T is precisely that dot product.
On the other hand, notice that the j-th row of BT is just (b1,j , . . . bn,j), in other words

the j-th column of B. Similarly, the i-th column of AT is (ai,1, . . . ai,n), the i-th row of A.
Therefore, we have that the (j, i)-th entry of (BT ) · (AT ) is just

(the j-th row of BT ) · (the i-th column of AT )

=(the j-th column of B) · (the i-th row of A)

=(the i-th row of A) · (the j-th column of B).

Therefore the two matrices (A · B)T , (BT ) · (AT ) have the same entries, and are therefore
the same matrices!

In particular, this tells us that if we look at the transpose of a product of n matrices
together, we have that it’s just the product of their transposes in reverse order! This is
because

(A1 ·A2 · . . . ·An)T = (A1 · (A2 · . . . ·An))T

= (A2 · . . . ·An)T ·AT1
= (A2 · (A3 · . . . ·An))T ·AT1
= (A3 · . . . An)T ·AT2 ·AT1

=
...

= ATn ·ATn−1 · . . . ·AT2 ·AT1 .

This, along with our earlier work on elementary matrices, makes the following result
trivial:

Theorem. For any n× n matrix A, we have det +(AT ) = det(A).

Proof. We proceed as follows:

1. First, write A as the product of elementary matrices E1 · . . . · En. Out of this collec-
tion, find all of the elementary matrices of the form Emultiply entry k by λ. Take their
corresponding λ’s, and enumerate them as λ1, . . . , λk.

2. Then, on one hand we can express

det +(A) = |λ1 · . . . · λk|,
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. where we regard this product as being 1 if there are no such lambda’s. This is
because we’ve shown in our work with elementary matrices that

det +(E1 · . . . · En) = det +(E1 · . . . · En−1) · α,

where α is equal to 1 if En was a “swap” or“ add some multiple of an entry to another
entry” matrix, and λ if it was a a “multiply an entry by λ” matrix.

Therefore, we can progressively pull off elementary matrices from the right of E1 · . . . ·
En, with the positive determinant changing by a factor of λ whenever we pull off a
“multiply” matrix and unchanging otherwise. At the end, we’ll get |λ1 · . . . · λk|, as
claimed!

3. Conversely, notice that we can use our earlier results on the transpose to write

AT = ETn · . . . · ET1 .

Furthermore, notice the following facts:

• The transpose of the “swap entries i and j” matrix is just itself, because this
matrix is symmetric across the top left-bottom right diagonal!

• Similarly, the transpose of the “multiply entry k by λ” matrix is just itself,
because this matrix is also symmetric across the top left-bottom right diagonal!

• Finally, the transpose of the “add λ copies of entry i to entry j” matrix is the
identity matrix except it has a λ in entry (i, j): in other words, it’s the “add λ
copies of entry j to entry i” matrix!

Therefore, in particular, we know that the transpose of an elementary matrix is an
elementary matrix of the same type and same λ! Therefore, repeating our proof from
(2) gives us that

det +(ETn · . . . · ET1 ) = |λ1 · . . . · λk|.

This proves our claim!

This gives us delightfully trivial proofs of problem (2) on HW#18:

4 Elementary Matrices and the Determinant, Round 2

Theorem. Take any matrix A. Look at the matrix E ·A, where E is an elementary matrix
of the form

Eadd λ copies of entry k to entry l, or Eswitch entry k and entry l.

Then

det +(E ·A) = det +(A).
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Proof. First, notice that

det +(E ·A) = det +
(
(E ·A)T

)
.

Then, notice that

(E ·A)T = AT · ET .

Now, notice that ET , as shown before, is still an elementary matrix of the same type as E:
i.e. it’s still a swap or add-type of elementary matrix.

Therefore, we can use our earlier results on elementary matrices and the determinant
to note that

det +(AT · ET ) = det +(AT ) = det +(A),

and therefore that

det +(E ·A) = det +(AT · ET ) = det +(AT ) = det +(A).

Theorem. Take any matrix A. Look at the matrix E ·A, where E is an elementary matrix
of the form

Emultiply entry k by λ.

Then

det +(A · E) = |λ| · det +(A).

Proof. This is the same argument as that above; we use our earlier results to note that

det +(E ·A) = det +
(
(E ·A)T

)
= det +(AT · ET ) = det +(AT ) · |λ| = det +(A) · |λ|.

5 The Determinant and Multiplication

We finally note finally that problem 3 is made pretty trivial by the techniques we used to
do problem 1:

Theorem. Take any two n× n matrices A, B. Then

det +(A ·B) = det +(A) · det +(B).

Proof. First, write A,B as products of elementary matrices:

A = E1 · . . . · En, B = En+1 · . . . · En+m.
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Let λ1, . . . λk denote the coefficients corresponding to all of the “multiply an entry by λ”
elementary matrices above in A, and λk+1, . . . λk+l denote those coefficients in B. Then,
via the exact proof used earlier in the transpose problem, we have

det +(A) = |λ1 · . . . · λk|,
det +(B) = |λk+1 · . . . · λk+l|, and

det +(A ·B) = |λ1 · . . . · λk + l|.

Therefore, the positive determinant of the product of two matrices is the product of the
positive determinants of these two matrices.

6 The General Determinant

Woo! Ok. That was a lot. But we’re nearly done.

Definition. The determinant (as opposed to the “positive determinant”) of a matrix A
is defined as follows:

1. Take A, and write it as the product E1 · . . . · En of elementary matrices.

2. To find the determinant det(A) of A, look at these elementary matrices. Let λ1, . . . λk
denote the constants that show up in the “multiply an entry by λi” elementary ma-
trices, and l denote the number of “swap” elementary matrices. Then

det(A) = (−1)l · λ1 · . . . · λk

This object, in other words, is just the positive determinant from before, i.e. the volume,
except multiplied by a factor of ±1 depending on the signs of the constants λi and the
number of swaps performed. This gives us the following observation for free:

Observation. For any matrix A, | det(A)| = det+(A).

This isn’t the only thing we get for free! If you go through all of the proofs in this talk
and remove the absolute-value signs and add in (−1)number of swaps in relevant places, you’ll
find that every proof we just did has an analogue for the determinant! In other words,

• det(AB) = det(A) det(B),

• det(AT ) = det(A),

• det(EA) = det(A) if E is an “add copies of one entry to another” elementary matrix,
−det(A) if E is a swap matrix, and λ det(A) if E is a “multiply entry by λ′′ matrix.

We close this talk by mentioning one property of the determinant that doesn’t hold for
the positive determinant: n-linearity!

Definition. Let T be a map from n× n matrices of real numbers to R. We say that T is
n-linear if the following always holds:
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• Take any matrix A, with columns ~ac1 , . . . ~acn .

• Suppose that ~aci is equal to some sum of vectors ~x+ ~y.

• Then, consider the two matrices created by replacing this i-th column with the vectors
~x, ~y respectively:

Ax =


...

...
...

...
...

~ac1 . . . ~aci−1 ~x ~aci+1 . . . ~acn
...

...
...

...
...

 ,

Ay =


...

...
...

...
...

~ac1 . . . ~aci−1 ~y ~aci+1 . . . ~acn
...

...
...

...
...

 ,
A map is called n-linear if

T (A) = T (Ax) + T (Ay),

for any column ~aci and pair of vectors ~x, ~y such that ~x+ ~y = ~aci .

Theorem. The determinant is n-linear.

Proof. We first note a quick example that shows why the positive determinant is not n-
linear: simply observe that the positive determinant of[

0 0
0 1

]
is 0, as the parallelogram spanned by (0, 0), (0, 1) has zero area. However, the parallelograms
spanned by [

1 0
0 1

]
,

[
−1 0
0 1

]
both have area 1! Therefore, because 0 6= 1 + 1, the positive determinant is not n-linear.

To see that the determinant is n-linear: take any matrix A, any column ~aci , and any
pair of vectors ~x, ~y such that ~x+ ~y = ~aci .

Write both of the vectors ~x, ~y as linear combinations

~x = proj(~x onto columns of A) + orth(~x onto columns of A),

~y = proj(~y onto columns of A) + orth(~y onto columns of A).

Notice that because x + y = ~aci , we have

orth(~x+ ~y onto columns of A) = orth( ~aci onto columns of A) = ~0,
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because ~aci is itself a column of A. Consequently, we have

orth(~x onto columns of A) = −orth(~y onto columns of A).

Now, notice that for the matrix Ax, we have

det(Ax) = det(Ax · Eadd λ copies of entry k to entry l,

for any λ, k, l such that k 6= l! In particular, if we write

proj(~x onto columns of A) = x1 ~ac1 + . . .+ xn ~acn ,

proj(~y onto columns of A) = y1 ~ac1 + . . .+ yn ~acn ,

we can use these matrices to see that

det(Ax) = det

Ax · these matrices add −xj copies of each column j 6=i to column i︷ ︸︸ ︷
Eadd −x1 copies of entry 1 to entry i · . . . · Eadd −xn copies of entry n to entry i

 ,

and similarly that

det(Ay) = det

Ay · these matrices add −yj copies of each column j 6=i to column i︷ ︸︸ ︷
Eadd −y1 copies of entry 1 to entry i · . . . · Eadd −yn copies of entry n to entry i

 .

But

Ax ·
these matrices add −xj copies of each column j 6=i to column i︷ ︸︸ ︷

Eadd −x1 copies of entry 1 to entry i · . . . · Eadd −xn copies of entry n to entry i

=


...

...
...

...
...

~ac1 . . . ~aci−1 ~x− (

all entries exceptxi ~aci︷ ︸︸ ︷
x1 ~ac1 + . . .+ xn ~acn) ~aci+1 . . . ~acn

...
...

...
...

...



=


...

...
...

...
...

~ac1 . . . ~aci−1 orth(~x onto columns of A) + xi ~aci ~aci+1 . . . ~acn
...

...
...

...
...

 ,

and similarly

Ay ·
these matrices add −yj copies of each column j 6=i to column i︷ ︸︸ ︷

Eadd −y1 copies of entry 1 to entry i · . . . · Eadd −yn copies of entry n to entry i

=


...

...
...

...
...

~ac1 . . . ~aci−1 orth(~y onto columns of A) + yi ~aci ~aci+1 . . . ~acn
...

...
...

...
...

 .
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Call these two matrices A′x, A
′
y.

There are now two possibilities.

1. The columns of A form a basis for Rn. In this case, we have that the two orth
components above are both zero, because there is nothing in Rn orthogonal to all of
Rn. Therefore, we have that

det(Ax) + det(Ay) = det(A · Emultiply entry i by xi) + det(A · Emultiply entry i by yi)

=xi det(A) + yi det(A)

=(xi + yi) det(A).

So: what is xi + yi? On one hand, we know that

~x+ ~y = ~aci = x1 ~ac1 + . . .+ xn ~acn + y1 ~ac1 + . . .+ yn ~acn ,

and therefore that

~0 = (x1 + y1) ~ac1 + . . .+ (xi + yi − 1) ~aci + . . .+ (xn + yn) ~acn .

This is a nontrivial linear combination of elements in a basis that equals 0; therefore,
all of the coefficients above must be 0! As a result, we must have xi + yi = 1. This
gives us

det(Ax) + det(Ay) =(xi + yi) det(A) = det(A),

as requested.

2. Otherwise, the columns of A do not form a basis for Rn. In this case, the columns of
A are linearly dependent! Take a combination

b1 ~ac1 + . . .+ bn ~acn = ~0

where not all of the bk’s are zero.

If in this combination the coefficent bi is zero, then there is a combination of the
columns of A, not using the i-th column, that combines to zero! This means that
for both of the matrices Ax, Ay, the columns of these matrices are also a linearly
dependent set, because this combination does not use the i-th column. Therefore, we
have that the determinants of these two matrices are zero, much like the determinant of
A itself, because all three are matrices with linearly dependent columns (and therefore
correspond to paralleletopes that live in a n−1 dimensional space, and thus have zero
volume.)

Otherwise, in this combination the bi coefficient is nonzero. This gives us a way to
express the i-th column of A as a linear combination of the other columns of A!

Therefore, by using the Eadd λ copies of entry k to entry l in a similar way to before, we can
subtract multiples of all of the other columns of Ax from the i-th column of A′x, such
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that we get rid of the xi ~aci part, without changing the determinant! We can also do
the same trick to the A′y matrix; this gives us that det(Ax) is the determinant of the
matrix that you get by replacing the i-th column of A with orth(~x onto columns of A),
and similarly for det(Ay)!

But, because orth(~x onto columns of A) = −orth(~y onto columns of A), we have that
the determinants of these two matrices are the same, except one is the opposite sign
of the other! Therefore, we have that det(Ax) = −det(Ay), and thus

det(Ax) + det(Ay) = 0 = det(A),

again because the columns of A are linearly dependent.

Why on earth do we care? Well: the homework will tell you, but basically, it’s because
this property — n-linearity — lets us actually calculate the determinant with relative
ease!

7 Appendix: A Proof That All Matrices Are Products Of
Elementary Matrices

In case you were wondering.

Theorem. Let A be an arbitrary n × n matrix. Then we can write A as the product of
elementary matrices.

Proof. To do this process, first do the following:

1. Take the collection R of all of A’s rows.

2. If this set is linearly independent, you’re done!

3. Otherwise, there is some row that shows up in this collection that is a combination of
the other rows. Get rid of that row, and return to (2).

This creates a subset R′ of A’s rows that is linearly independent. Furthermore, it creates
a subset from which we can create any of A’s rows, even the ones we got rid of! This is
because we only got rid of rows that were linearly dependent on the earlier ones; i.e. we
only got rid of rows that we can make with the rows we kept!

So: all we need to do now is make B into a matrix that has all of the rows in this subset
R′! If we can do this, then we can just do the following, using the elementary matrices that
correspond to these row operations:

• Multiply all of the other rows in B by zero.

• Now, using each all-zero row as an empty slot, create each of the rows from A that
we don’t have by combining the rows from R′. We can do this because all of the
remaining rows in A were linear combinations of the R′ rows!
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• Finally, rearrange the rows using swaps so that our matrix is A (and not just a matrix
with the same rows, but in some different order.)

This is our plan! We execute the plan as below:

1. We start with B equal to the n × n identity matrix. Note that B’s rows span all of
Rn

2. If all of the rows in R′ currently occur as rows of B, stop!

3. Otherwise, there is a row ~ar in R′ that is not currently a row in B.

4. If the rows of B span R, then specifically there is a combination of the rows of B that
yields ~ar.

5. Furthermore, this vector is not just a combination of rows in R′, because R′ is a linearly
independent set. Therefore, in any linear combination of B’s rows that creates ~ar,
there is some row of B that is not one of the R′ rows that’s used in creating ~ar.

6. So: take the linear combination

a1 ~br1 + . . . an ~brn = ~ar,

and let ~brk denote the row that occurs above that’s not one of the R′ rows and that
has ak 6= 0.

7. Take B, and multiply it by

all of the values ai, with i 6=k︷ ︸︸ ︷
add a1 copies of

r1 to rk︷ ︸︸ ︷
...

. . . a1 . . .
...

 ·
add a2 copies of

r2 to rk︷ ︸︸ ︷
...

. . . a2 . . .
...

 · . . . ·
add an copies of

r2 to rk︷ ︸︸ ︷
...

. . . an . . .
...

 ·
multiply row rk

by ak︷ ︸︸ ︷
...

. . . ak . . .
...

 ·B
This takes the k-th row of B and fills it with the linear combination that creates ~ar!
So this means that the row ~ar is now in B.

8. Also, notice that the rows of B all still span Rn! This is because

a1 ~br1 + . . . an ~brn = ~ar

⇒ ~brk =
1

ak

 a1 ~br1 + . . . an ~brn︸ ︷︷ ︸
terms that aren’t ak ~brk

+~ar

 .

Therefore, we have that the old k-th row ~brk is in the span of the new B’s rows! As
well, because none of the other rows changed, those rows are all still in the span as
well. Therefore, because the new B’s rows contain the old B’s rows in their span,
they must span Rn!
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9. Go to (2), and repeat this process!

The result of this process is a matrix B that contains all of the rows in R′, which is what
we wanted (because we can make A out of this!) So we’re done.

To illustrate this argument, we run another example:

Example. Consider the matrix

A =

0 1 2
4 −1 0
2 0 1


Write A as a product of elementary matrices.

Proof. We start, as directed in the proof, by finding a subset of A’s rows that is linearly in-
dependent. We can tell at the start that the collection of all rows is not linearly independent,
because

1(0, 1, 2) + 1(4,−1, 0)− 2(2, 0, 1) = (0, 0, 0).

However, we also have that the pair

(0, 1, 2), (2, 0, 1)

is linearly independent, because

α(0, 1, 2) + β(2, 0, 1) = (0, 0, 0)⇒ α, β = 0,

and that these two vectors contain the third in their span.
So the set R′ from our discussion above is just these two vectors!
Set B equal to the 3 × 3 identity matrix. We start by picking a vector from R′ – let’s

choose ~ar = (0, 1, 2).
We want to multiply B by elementary matrices so that it has (0, 1, 2) as one of its rows.

To do this, we first write (0, 1, 2) as a combination of B’s rows:

0(1, 0, 0) + 1(0, 1, 0) + 2(0, 0, 1) = (0, 1, 2).

We now pick a row from B whose coefficient above is nonzero, and that isn’t a row in R′.
For example, the coefficient of the second row above is 1, and the second row (0, 1, 0) is not
in R′: so we can pick the second row.

We now turn the second row into this ~ar = (0, 1, 2), by using the linear combination we
have for (0, 1, 2) above:

add 2 copies of
r3 to r2︷ ︸︸ ︷1 0 0

0 1 2
0 0 1

 ·
add 0 copies of

r1 to r2︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
multiply row r2

by 1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 0 0

0 1 0
0 0 1

 =

1 0 0
0 1 2
0 0 1

 .
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Success! We repeat this. We choose another row from R′, specifically ~ar = (2, 0, 1). We
write (2, 0, 1) as a combination of B’s rows:

2(1, 0, 0) + 0(0, 1, 2) + 1(0, 0, 1) = (2, 0, 1).

We now pick a row from B whose coefficient above is nonzero, and that isn’t a row in
R′; for example, the first row works here.

We now turn the first row into this ~ar = (2, 0, 1), by using the linear combination we
have for (2, 0, 1) above:

add 1 copies of
r3 to r1︷ ︸︸ ︷1 0 1

0 1 0
0 0 1

 ·
add 0 copies of

r2 to r1︷ ︸︸ ︷1 0 0
0 1 0
0 0 1

 ·
multiply row r1

by 2︷ ︸︸ ︷2 0 0
0 1 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷1 0 0

0 1 2
0 0 1

 =

2 0 1
0 1 2
0 0 1

 .
We are now out of rows of R′! This brings us to the second stage of our proof: multiply

all of the remaining rows that aren’t R′ rows by 0.

multiply row r3
by 0︷ ︸︸ ︷1 0 0

0 0 1
0 1 0

 ·
the matrix B︷ ︸︸ ︷2 0 1

0 1 2
0 0 1

 =

2 0 1
0 1 2
0 0 0

 .
Now we are at the last stage of our proof: combine the R′ rows to create whatever rows in
A are left, in these “blank” all-zero rows!

Specifically, we take the one row of A that’s left: (4,−1, 0). As we noted before, we can
write

(4,−1, 0) = 2(2, 0, 1)− 1(0, 1, 2).

Therefore, we have

add 2 copies of
r1 to r3︷ ︸︸ ︷1 0 0

0 1 0
2 0 1

 ·
add −1 copies of

r2 to r3︷ ︸︸ ︷1 0 0
0 1 0
0 −1 1

 ·
the matrix B︷ ︸︸ ︷2 0 1

0 1 2
0 0 0

 =

2 0 1
0 1 2
4 −1 0

 .
So we have a matrix with the same rows as A! Finally, we just shuffle the rows of B to get
A itself:

switch rows
r3 and r2︷ ︸︸ ︷1 0 0
0 0 1
0 1 0

 ·
switch rows
r2 and r1︷ ︸︸ ︷0 1 0
1 0 0
0 0 1

 ·
the matrix B︷ ︸︸ ︷2 0 1
0 1 2
4 −1 0

 =

0 1 2
4 −1 0
2 0 1

 = A.

Win!
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