
Math/CS 103 Professor: Padraic Bartlett

Lecture 12: Elementary Matrices

Week 7 UCSB 2013

On HW#13, we studied three special kinds of matrices:

Definition. The first matrix, Emultiply entry k by λ, is the matrix corresponding to the linear
map that multiplies its k-th coördinate by λ and does not change any of the others. On the
homework, you showed that it has the form

Emultiply entry k by λ =



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 λ 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the value at
(k, k), which is λ.

The second matrix, Eswitch entry k and entry l, corresponds to the linear map that swaps
its k-th coördinate with its l-th coördinate, and does not change any of the others. On the
homework, you showed that it has the form

Eswitch entry k and entry l =



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1 . . . 0
0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 1


You can create this matrix by starting with a matrix with 1’s down its diagonal and 0’s
elsewhere, and switching the k-th and l-th columns.

Finally, the third matrix, Eadd λ copies of entry k to entry l, for k 6= l, corresponds to the
linear map that adds λ copies of its k-th coördinate to its l-th coördinate and does not
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change any of the others. On the homework, you showed that it has the form

Eadd λ copies of entry k to entry l =



1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1 0 . . . 0
0 . . . λ 0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 1


This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the value in
row l, column k, which is λ.

These three matrices are called the elementary matrices. They’re incredibly cool, and
we’re going to study them in this lecture.

1 Elementary Matrices: What They Do

The first thing we want to talk about is what these matrices do! Specifically, take any n×n
matrix A. What is the matrix corresponding to Emultiply entry k by λ ◦A? What do the other
elementary matrices do to A?

We study this in the following theorem:

Theorem 1. Take any n × n matrix A. Suppose that we are looking at the composition
E◦A, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• if E = Emultiply entry k by λ, then E◦A would be the matrix A with its k-th row multipled
by λ.

• if E = Eswitch entry k and entry l, then E ◦A would be the matrix A with its k-th and l-th
rows swapped, and

• if E = Eadd λ copies of entry k to entry l, then E ◦ A would be the matrix A with λ copies
of its k-th row added to its l-th row.

Proof. To prove these claims, we repeatedly use the following result from the homework,
that told us how to “compose” or “multiply” two matrices together:

Theorem. HW#13, Problem 2.2 Take any pair of linear maps A : Rn → Rm, B : Rm →
Rk with associated matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 , B =


b1,1 b1,2 . . . b1,m
b2,1 b2,2 . . . b2,m

...
...

. . .
...

bk,1 bk,2 . . . bk,m

 .
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Look at the linear map given by the composition of these two maps: i.e. consider the
linear map B ◦ A : Rn → Rk. Denote the row vectors of B as ~bri ’s and the column vectors
of A as ~acj ’s. We claim that this linear map corresponds to the k × n matrix

~br1 · ~ac1 ~br1 · ~ac2 . . . ~br1 · ~acn
~br2 · ~ac1 ~br2 · ~ac2 . . . ~br2 · ~acn
. . . . . .

. . . . . .
~brk · ~ac1 ~brk · ~ac2 . . . ~brk · ~acn

 .
In other words, to get the matrix given by composing two matrices, we simply dot the rows
of the first matrix with the columns of the second matrix in the manner described above.

Given this result, we simply calculate E ◦A for each of the three cases we’ve described
above.

To start, take any n× n matrix A, row k and constant λ, and examine the product

Emultiply entry k by λ ◦A

=



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 λ 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


◦



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

What do entries in the resulting matrix look like? Well, there are two cases:

• in the location (i, j), for any i 6= k and any j, we know that the entry there is just
the dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = aij ,

because the 1 in the i-th row of E is in the i-th place.

• in the location (k, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , λ, . . . 0) · (a1j , . . . anj) = λkj ,

because the λ in the k-th row of E is in the k-th place.
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By inspection, this matrix is precisely

a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
...

...
...

...
...

. . .
...

ak−1,1 ak−1,2 ak−1,3 ak−1,4 ak−1,5 . . . ak−1,n

λak1 λak2 λak3 λak4 λak5 . . . λakn
ak+1,1 ak+1,2 ak+1,3 ak+1,4 ak+1,5 . . . ak+1,n

...
...

...
...

...
. . .

...
an1 an2 an3 an4 an5 . . . ann


.

So this elementary matrix works as claimed.
The proofs for the other two elementary matrices are similar. For the matrix Eswitch entry k and entry l,

we again examine the product E ◦A:

Eswitch entry k and entry l ◦A

=



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1 . . . 0
0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 1


◦



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

Again, what do entries in the resulting matrix look like? In this situation, there are
three cases:

• In the location (i, j), for any i 6= k, l and any j, we know that the entry there is just
the dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = aij ,

because the 1 in the i-th row of E is in the i-th place.

• In the location (k, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = alj ,

because the 1 in the k-th row of E is in the l-th place.

• In the location (l, j), for any j, we know that the entry there is just the dot product
of E’s l-th row and A’s j-th column: i.e.

entry (l, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = akj ,

because the 1 in the l-th row of E is in the k-th place.
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By inspection, this matrix is

a11 a12 a13 a14 a15 . . . a1n
...

...
...

...
...

. . .
...

ak−1,1 ak−1,2 ak−1,3 ak−1,4 ak−1,5 . . . ak−1,n

al1 al2 al3 al4 al5 . . . aln
ak+1,1 ak+1,2 ak+1,3 ak+1,4 ak+1,5 . . . ak+1,n

...
...

...
...

...
. . .

...
al−1,1 al−1,2 al−1,3 al−1,4 al−1,5 . . . al−1,n

ak1 ak2 ak3 ak4 ak5 . . . akn
al+1,1 al+1,2 al+1,3 al+1,4 al+1,5 . . . al+1,n

...
...

...
...

...
. . .

...
an1 an2 an3 an4 an5 . . . ann



.

This is A with its k-th and l-th rows swapped, as claimed.
Finally, we turn to Eadd λ copies of entry k to entry k, and again look at E ◦A:

Eadd λ copies of entry k to entry l ◦A

=



1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1 0 . . . 0
0 . . . λ 0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 1


◦



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

Again, what do entries in the resulting matrix look like? In this situation, there are just
two last cases:

• In the location (i, j), for any i 6= l and any j, we know that the entry there is just the
dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = aij ,

because the 1 in the i-th row of E is in the i-th place.

• In the location (l, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , 0, λ, 0, . . . , 0, 1, 0, . . . 0) · (a1j , . . . anj) = λakj + alj ,

because the λ in the l-th row of E is in the k-th place, and the 1 is in the l-th place.
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By inspection, this matrix is

a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
...

...
...

...
...

. . .
...

al−1,1 al−1,2 al−1,3 al−1,4 al−1,5 . . . al−1,n

λak1 + al1 λak2 + al2 λak3 + al3 λak4 + al4 λak5 + al5 . . . λakn + aln
al+1,1 al+1,2 al+1,3 al+1,4 al+1,5 . . . al+1,n

...
...

...
...

...
. . .

...
an1 an2 an3 an4 an5 . . . ann


.

This is A with λ times its k-th row added to its l-th row, as claimed.

2 Elementary Matrices: How To Undo Them

On our last HW, set 14, we talked about how to “undo” or “invert” certain matrices: i.e.
given a matrix like

A =

1 0 0
1 1 0
1 1 1


we looked for a second matrix like

B =

 1 0 0
−1 1 1
0 −1 1


such that

B ◦A =

 1 0 0
−1 1 1
0 −1 1

 ◦
1 0 0

1 1 0
1 1 1

 =

 (1, 0, 0) · (1, 1, 1) (1, 0, 0) · (0, 1, 1) (1, 0, 0) · (0, 0, 1)
(−1, 1, 0) · (1, 1, 1) (−1, 1, 0) · (0, 1, 1) (−1, 1, 0) · (0, 0, 1)
(0,−1, 1) · (1, 1, 1) (0,−1, 1) · (0, 1, 1) (0,−1, 1) · (0, 0, 1)


=

1 0 0
0 1 0
0 0 1

 , the identity matrix.

In essence, we were looking for a matrix that we can multiply A by and get the identity
map: in other words, a linear map B that we can apply to A to “invert” or “undo” what
A does! (This is because if B ◦ A is the identity map, then we’re effectively saying that
B ◦ A(~x) = ~x, for any vector ~x. In other words, the map B “undoes” whatever A does to
the vector ~x.)

For some matrices, we can do this, like in the example above! For others, we can’t: to
see a trivial example, consider a matrix A with one column that’s all 0’s.

a11 . . . a1,k−1 0 a1,k+1 . . . a1n
a21 . . . a2,k−1 0 a2,k+1 . . . a2n
...

. . .
...

...
...

. . .
...

an1 . . . an,k−1 0 an,k+1 . . . ann

 .
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If we multiply this by any matrix B, we’ll get

B ◦A =


b11 . . . b1,k−1 b1,k b1,k+1 . . . b1n
b21 . . . b2,k−1 b2,k b2,k+1 . . . b2n
...

. . .
...

...
...

. . .
...

bn1 . . . bn,k−1 bn,k bn,k+1 . . . bnn

 ◦

a11 . . . a1,k−1 0 a1,k+1 . . . a1n
a21 . . . a2,k−1 0 a2,k+1 . . . a2n
...

. . .
...

...
...

. . .
...

an1 . . . an,k−1 0 an,k+1 . . . ann



The matrix B ◦ A will have its k-th column made up entirely of 0’s, as the entries in that
column are all of the form (some row of B)·(the k-th column of A, which contains only 0’s).
In particular, this means it cannot be the identity matrix, because the identity matrix’s
k-th column does not contain only 0’s in it!

So: can we invert our elementary matrices?

Theorem. Let E be an elementary matrix. Then,

• if E = Emultiply entry k by λ, then E is invertible whenever λ 6= 0, and has inverse
Emultiply entry k by (1/λ).

• if E = Eswitch entry k and entry l, then E is invertible, and has inverse equal to itself.

• if E = Eadd λ copies of entry k to entry l, then E is invertible, and has inverse
Eadd −λ copies of entry k to entry l.

Proof. These are pretty immediate, and follow from the properties of these matrices that
we’ve proven earlier. For example, if E = Emultiply entry k by λ, then E is the matrix with 1’s
on its diagonal and 0’s elsewhere, except for a λ at (k, k). If we multiply this on the left
by Emultiply entry k by (1/λ), then (by our earlier work) we’re multiplying the k-th row of our
original E by (1/λ). This gives us the identity matrix.

The other two are similar. If E = Eswitch entry k and entry l, then E is the identity matrix
with its k-th and l-th rows swapped. Multiplying on the left by E just swaps them again,
which yields the identity matrix.

Finally, if E = Eadd λ copies of entry k to entry l, then E is the identity matrix except for a λ
in row l, column k. Applying Eadd −λ copies of entry k to entry l to this matrix adds −λ copies
of the k-th row of E to its l-th row. But this just adds −λ copies of ~ek to the l-th row,
which is just adding −λ to the cell that contains λ and doing nothing else. This yields the
identity matrix, as claimed.

3 Elementary Matrices: What Can We Make?

Here’s a fun1 game: suppose you’re stranded on a desert island, with only a box containing
all of the 3× 3 elementary matrices to keep you company.

If you’re allowed to compose these elementary matrices with each other, what other
kinds of matrices can you make?

1For certain values of fun.
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Well: you can certainly make something like1 0 0
2 1 0
0 0 1

 ◦
1 0 0

0 1 0
4 0 1

 =

1 0 0
2 1 0
4 0 1

 .
And even something like1 2 0

0 1 0
0 0 1

 ◦
1 0 0

2 1 0
0 0 1

 ◦
1 0 0

0 1 0
4 0 1

 =

1 0 0
2 1 0
4 0 1

 ◦
1 0 0

0 1 0
4 0 1


= ◦

1 0 0
2 1 0
8 0 1

 .
And maybe even1 2 0

0 1 0
0 0 1

 ◦
1 0 0

2 1 0
0 0 1

 ◦
1 0 0

0 1 0
4 0 1

 ◦
1 0 0

0 1 0
0 0 −3

 =

1 0 0
2 1 0
8 0 1

 ◦
1 0 0

0 1 0
0 0 −3


=

 1 0 0
2 1 0
−24 0 −3

 .
But what can’t we create? Is there anything we can’t create?
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