Math/CS 103	Professor: Padraic Bartlett
Homework 6: Linear Maps	
Due 10/14/13, at the start of class	UCSB 2013

This set's a little different. First, recall from class that we've introduced two examples of finite-dimensional vector spaces:

- \mathbb{R}^{n}, the collection of all n-tuples of real numbers. For example, \mathbb{R}^{3} was the collection of all triples (x, y, z) where x, y, z were all in \mathbb{R}.
- $\mathcal{P}_{n}(\mathbb{R})$, the collection of all polynomials with real-valued coefficients of degree $\leq n$. For example, $\mathcal{P}_{2}(\mathbb{R})$ is the collection of all polynomials of the form $a+b x+c x^{2}$, where a, b, c were in \mathbb{R}.

We called these both vector spaces because they were both objects that we had welldefined notions of vector addition (i.e. within any one of these spaces, we could add any two elements from that space together) and scalar multiplication (i.e. we could take any of these objects and multiply it by a real number, and still have an object in our space.)

In this problem set, you're going to work with the following definition:
Definition. A linear map from a vector space V to another vector space W, where V and W may be different, is a function $T: V \rightarrow W$ with the following properties:

- Plays well with addition: for any $\vec{v}, \vec{w} \in V, T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$.
- Plays well with multiplication: for any $\vec{v} \in V$ and any $a \in \mathbb{R}, T(a \vec{v})=a T(\vec{v})$.

For example, the map $i d: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by

$$
i d(x, y)=(x, y)
$$

is a linear map, because

- it plays well with addition: for any two vectors $(a, b),(c, d)$, we have $i d((a, b)+$ $(c, d))=i d(a+c, b+d)=(a+c, b+d)$. This is the same thing as $i d(a, b)+i d(c, d)=$ $(a, b)+(c, d)=(a+c, b+d)$.
- it plays well with multiplication: for any vector (a, b) and any real number λ, we have $i d(\lambda(a, b))=i d(\lambda a, \lambda b)=(\lambda a, \lambda b)$. This is the same thing as $\lambda i d(a, b)=$ $\lambda(a, b)=(\lambda a, \lambda b)$.

Conversely, the map $T: \mathcal{P}_{1}(\mathbb{R}) \rightarrow \mathcal{P}_{1}(\mathbb{R})$, defined by

$$
T(a+b x)=a^{2}
$$

is not a linear map, because

- it does not play well with addition. Specifically, look at the two polynomials $2,2+x$ in $\mathcal{P}_{1}(\mathbb{R}) . T(2+(2+x))=T(4+x)=4^{2}=16$, while $T(2)+T(2+x)=$ $2^{2}+2^{2}=8$.

Choose six of the twelve maps below, and decide whether or not they are linear maps. If you choose something that is a linear map, show that it obeys the two properties described in the definition of a linear map. If you choose something that is not a linear map, construct a set of inputs that makes it fail one of the two properties described in the definition of a linear map. Have fun!

1. $T: \mathbb{R} \rightarrow \mathbb{R}$, defined such that

$$
T(x)=|x| .
$$

2. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, defined such that

$$
T(w, x, y, z)=(0,0) .
$$

3. $T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathbb{R}$, defined such that

$$
T(p(x))=p(1) .
$$

4. $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{5}(\mathbb{R})$, defined such that

$$
T(p(x))=x^{2} \cdot p(x) .
$$

5. $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{5}(\mathbb{R})$, defined such that

$$
T(p(x))=(1+x) \cdot p(x) .
$$

6. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$, defined such that

$$
T\left(x_{1}, \ldots x_{n}\right)=\left(x_{2}, x_{3}, \ldots x_{n}\right) .
$$

7. $T: \mathbb{R}^{3} \rightarrow \mathcal{P}_{3}(\mathbb{R})$, defined such that

$$
T(a, b, c)=(x-a) \cdot(x-b) \cdot(x-c) .
$$

8. $T: T: \mathcal{P}_{4}(\mathbb{R}) \rightarrow T: \mathcal{P}_{3}(\mathbb{R})$, defined such that

$$
T(p(x))=\frac{d}{d x} p(x) .
$$

9. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, defined such that

$$
T(w, x, y, z)=\left(2 w+3 x, 4 y+\left(5^{5^{5}}\right) z\right)
$$

10. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$, defined such that

$$
T(w, x, y, z)=(w x, y z) .
$$

11. $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$, defined such that

$$
T(u, v, w, x, y, z)=(z, y, x, w, v, u) .
$$

12. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined such that

$$
T(x, y)=\left(x^{3}+y^{3}\right)^{1 / 3}
$$

Bonus! Create a map $T: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the "plays well with addition" property, but fails the "plays well with multiplication" property. Or show it's impossible.

