Math/CS 103	Professor: Padraic Bartlett
Homework 16: Orthogonality and Projection	
Due 11/22/13, at the start of class.	UCSB 2013

1 Orthogonality: Review

On HW\#5 and the accompanying lecture \#6, we introduced the idea of orthogonality:
Definition. Take two vectors $\left(x_{1}, \ldots x_{n}\right),\left(y_{1}, \ldots y_{n}\right) \in \mathbb{R}^{n}$. We say that these two vectors are orthogonal if their dot product is 0 . Alternately, we can say that two vectors are orthogonal if the angle θ between them is $\pm \pi / 2$; this is a consequence of a theorem we proved in class, where we showed

$$
\vec{x} \cdot \vec{y}=\|\vec{x}\| \cdot\|\vec{y}\| \cos (\theta) .
$$

(Recall that $\|\vec{x}\|$ is the length of the vector \vec{x} : i.e. the length of $(1,2,3)$ is simply the quantity $\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}$.)

2 Orthogonality: The Aim of This Problem Set

This problem set is meant to illustrate a solution to the following problem:
Question 1. Suppose that we have a collection of vectors $W=\left\{\overrightarrow{w_{1}}, \ldots \overrightarrow{w_{k}}\right\}$, and some other vector \vec{v}. Is there some way we can write \vec{v} as the sum of two vectors $\vec{r}+\vec{p}$, where \vec{r} is orthogonal to all of the vectors in W, while \vec{p} is contained in the span of W ?

Visually, we're trying to do the following:

The motivation for why on earth we want to do this comes later in the problem set; for now, however, have some exercises!

3 Orthogonality: Problems

Do two problems below. Even if you do not prove problem 1 or problem 3, you can use it in other problems; in fact, you're going to need them later in this class, so you should definitely give them a look.

1. Take any two vectors \vec{v}, \vec{w}. Form the projection of \vec{v} onto \vec{w}, denoted $\operatorname{proj}(\vec{v}$ onto $\vec{w})$, as described below:

- Take the vector \vec{w}.
- Draw a line perpindicular to the vector \vec{w}, that goes through the point \vec{v} and intersects the line spanned by the vector \vec{w}.
- $\operatorname{proj}(\vec{v}$ onto $\vec{w})$ is precisely the point at which this perpindicular line intersects \vec{w}.

We illustrate this below:

Prove that

$$
\operatorname{proj}(\vec{v} \text { onto } \vec{w})=\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^{2}} \cdot \vec{w} .
$$

2. (a) Calculate the projection of $(1,1,1)$ onto $(1,2,2)$, using problem 1 above.
(b) Calculate the projection of $(2,1,0)$ onto $(2,3,6)$.
(c) Calculate the projection of $(-1,1,-1,1)$ onto $(5,7,31,101)$.
3. Take any two vectors \vec{v}, \vec{w}. Consider the vector

$$
\operatorname{orth}(\vec{v} \text { onto } \vec{w})=\vec{v}-\operatorname{proj}(\vec{v} \text { onto } \vec{w}) .
$$

By taking the dot product, show that orth $(\vec{v}$ onto $\vec{w})$ is orthogonal to the vector \vec{w}.
4. (a) Calculate $\operatorname{orth}(\vec{v}$ onto $\vec{w})$, where $\vec{v}=(0,1,0)$ and $\vec{w}=(4,4,7)$.
(b) Calculate orth $(\vec{v}$ onto $\vec{w})$, where $\vec{v}=(1,1,1)$ and $\vec{w}=(3,4,12)$.
(c) Calculate the projection of $(\overbrace{1,0 \ldots 0}^{25 \text { entries }})$ onto $(24,23,22, \ldots, 2,1,0)$.

4 Orthogonality: Why Do We Care?

Orthogonality is a concept we talked about a long time ago; why return to it now?
The rough idea for why we care about orthogonality now is because it's the easiest way to understand the idea of \mathbf{n}-dimensional volume! Specifically: suppose you have a parallelogram spanned by the two vectors \vec{v}, \vec{w}.

What's the area of this parallelogram? Well, it's the length of the base times the height, if you remember your high-school geometry! But what are these two quantities? Well: the base has length just given by the length of \vec{w}. The height, however, is precisely the kind of thing we've been calculating in this set! Specifically: suppose that we can write \vec{v} as the sum $\vec{p}+\vec{r}$, where \vec{p} is some multiple of \vec{v} and \vec{r} is orthogonal to \vec{w}. Then the length of \vec{r} is precisely the height!

Therefore, to find the area here, we just need to multiply the length of \vec{r} and the length of \vec{w} together.

For three dimensions, the picture is similar. Suppose you want to find the volume of a parallelepiped - i.e. the three-dimensional analogue of a parallelogram - spanned by the three vectors $\vec{v}, \overrightarrow{w_{1}}, \overrightarrow{w_{2}}$.

What's the volume of this parallelotope? Well, this is not much harder to understand than the two-dimensional case: it's just the area of the parallelogram spanned by the two vectors $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$ times the height! And again, the height is precisely what we've been studying in this homework. Suppose that we can write $\vec{v}=\vec{r}+\vec{p}$, for some vector \vec{p} in the span of $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$ and some vector \vec{r} orthogonal to $\overrightarrow{w_{1}}, \overrightarrow{w_{2}}$. Then the length of this vector \vec{r} is, again, precisely the height!

This process generalizes to n dimensions: to find the volume of a n-dimensional parallelotope spanned by n vectors $\overrightarrow{w_{1}}, \ldots \overrightarrow{w_{n}}$, we just start with $\overrightarrow{w_{1}}$, and repeatedly for each $\overrightarrow{w_{2}}, \overrightarrow{w_{n}}$, find the "height" of each $\overrightarrow{w_{i}}$ over the set $\overrightarrow{w_{1}}, \ldots \vec{w}_{\overrightarrow{i-1}}$ by doing this "write $\overrightarrow{w_{i}}$ as a projection \vec{p} onto $\left\{\overrightarrow{w_{1}}, \ldots \overrightarrow{w_{i-1}}\right\}$, plus an orthogonal bit \vec{r}, whose length is the height" trick. By taking the product of all of these heights, we get what we would expect to be the n-dimensional volume of the parallelotope! (In fact, it's kinda confusing just what n dimensional volume even means, so if you want you can take this as the definition of volume for these kinds of objects in n-dimensional space.)

