| Math/CS 103 | Professor: Padraic Bartlett |
| :--- | ---: | ---: |
| Homework 15: Elementary Matrices | |
| Due 11/18/13, at the start of class. | UCSB 2013 |

There are a number of problems on this set. Problems from the first two sections are worth half a point apiece; problems from the third section are worth a point apiece. Do three points worth of problems. Have fun!

1 Desert Islands and Elementary Matrices

The scenario for this section is the following: suppose that you're stranded on a desert island, with nothing but a large box containing all of the 3×3 elementary matrices. What matrices can you create?

At the end of class, we noticed that we can make things like

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \circ\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
4 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right] .
$$

What else can we create? Specifically: consider the following six matrices. Come up with a sequence of elementary matrices that we can compose together to create that matrix.

1. $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
2. $\left[\begin{array}{ccc}1 & 1 & 2 \\ 3 & 5 & 8 \\ 13 & 21 & 34\end{array}\right]$
3. $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$
4. $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 3\end{array}\right]$
5. $\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
6. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

2 Desert Islands: Now With Less Matrices

Suppose you're in the same situation as before, but parrots on your desert island have stolen all of your elementary matrices of the form $E_{\text {multiply entry k by } 0 \text {. So you still have all of your }}$ "swap two things" elementary matrices, and all of your "add copies of one row to another" matrices, but you only have the "multiply a row by λ " matrices when $\lambda \neq 0$.

Consider the following four matrices that we made in section 1 . Show that we can no longer make these matrices.

1. $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
2. $\left[\begin{array}{ccc}1 & 1 & 2 \\ 3 & 5 & 8 \\ 13 & 21 & 34\end{array}\right]$
3. $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$
4. $\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$

3 Elementary Matrices: Now With Less Desert Islands

1. Take any 3×3 matrix A. Show that we can create A with an appropriate combination of elementary matrices.
2. Suppose that A is a 3×3 matrix that we cannot invert. Prove that we cannot write $A \mathrm{~A}$ as a composition of elementary matrices, if we do not get to use the elementary

