Math/CS 103	Professor: Padraic Bartlett	
	Homework 14: Isomorphism and Matrices	
Due *Wednesday,* 11/13/13, at the start of class.		

There are a few sections to this set: a theoretical section, a calculational section, and a fun section. Problems in the theory section are worth one point apiece. Problems in the calculational section are worth half a point apiece. Problems in the fun section are worth two points each, and are fun. Do four points worth of problems. Have fun!

1 Theory-ish problems

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map, with associated matrix

$$
\left[\begin{array}{cccc}
\vdots & \vdots & \ldots & \vdots \\
\overrightarrow{t_{1}} & \overrightarrow{t_{c}} & \ldots & \overrightarrow{t_{c_{n}}} \\
\vdots & \vdots & \ldots & \vdots
\end{array}\right]
$$

(The vectors $\overrightarrow{t_{c_{i}}}$ denote the columns of the $m \times n$ matrix associated to T.)
Prove that $\operatorname{null}(T)=\{\overrightarrow{0}\}$ if and only if the set of vectors $\left\{\overrightarrow{t_{1}}, \overrightarrow{t_{c_{2}}}, \ldots, \overrightarrow{t_{c_{n}}}\right\}$ is linearly independent.
2. Let T be a linear map just like above. Prove that range $(T)=\mathbb{R}^{m}$ if and only if the set of vectors $\left\{\overrightarrow{c_{c_{1}}}, \overrightarrow{t_{2}}, \ldots, \overrightarrow{t_{c_{n}}}\right\}$ spans \mathbb{R}^{m}.

Suppose, for the moment, that you have proven the above two questions (even if you haven't!) Then, recall the following result from HW \#10:

Theorem. A linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is an isomorphism if and only if

- $\operatorname{null}(T)=\{\overrightarrow{0}\}$.
- $\operatorname{range}(T)=\mathbb{R}^{m}$.

By sticking these three results together, we get the following result for free:
Theorem. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map, with associated matrix

$$
\left[\begin{array}{cccc}
\vdots & \vdots & \ldots & \vdots \\
\overrightarrow{t_{c_{1}}} & \overrightarrow{t_{c_{2}}} & \ldots & \overrightarrow{t_{c_{n}}} \\
\vdots & \vdots & \ldots & \vdots
\end{array}\right] .
$$

Then T is an isomorphism - in other words, a linear map that is both injective and surjective - if and only if

- $\left\{\overrightarrow{t_{1}}, \overrightarrow{t_{c_{2}}}, \ldots, \overrightarrow{c_{n}}\right\}$ is linearly independent, and
- $\left\{t_{c_{1}}, \overrightarrow{c_{c_{2}}}, \ldots, \overrightarrow{c_{n}}\right\}$ spans \mathbb{R}^{m}.

Even if you didn't prove the above theory problems, you should look at the above theorem carefully! You will need it for the next section.

2 Calculational: Find the Isomorphism

There are 8 matrices below. For each, use the criteria given to you on the page earlier to decide if it is an isomorphism.

1. $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
2. $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
3. $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]$
4. $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
5. $\left[\begin{array}{ccc}3 & 2 & 12 \\ 4 & 2 & 1 \\ 1 & 7 & 7 \\ 7 & 8 & 0\end{array}\right]$
6. $\left[\begin{array}{cccc}1 & 1 & 2 & 3 \\ 5 & 8 & 13 & 21 \\ 34 & 55 & 89 & 144\end{array}\right]$
7. $\left[\begin{array}{lll}0 & 2 & 4 \\ 1 & 3 & 6 \\ 9 & 0 & 0\end{array}\right]$
8. $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1\end{array}\right]$

3 Calculational: Invert the Isomorphism

Pick some of the matrices above that corresponded to isomorphisms. For any such matrix M, try to find a map A such that $M A=A M=$ the identity matrix. (There are as many problems here as there are isomorphisms in the above section!)

4 Fun: now with Putnam Problems

1. Suppose that C, D are $n \times n$ matrices such that $C D C D=0$. Is it true that $D C D C$ is necessarily equal to 0 ?
2. Let A be the 4×4 matrix

$$
\left[\begin{array}{llll}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{2,1} & a_{2,2} & a_{2,3} & a_{1,4} \\
a_{3,1} & a_{3,2} & a_{3,3} & a_{1,4} \\
a_{4,1} & a_{4,2} & a_{4,3} & a_{1,4}
\end{array}\right]
$$

For any positive integer k, define

$$
A^{[k]}=\left[\begin{array}{cccc}
a_{1,1}^{k} & a_{1,2}^{k} & a_{1,3}^{k} & a_{1,4}^{k} \\
a_{2,1}^{k} & a_{2,2}^{k} & a_{2,3}^{k} & a_{1,4}^{k} \\
a_{3,1}^{k} & a_{3,2}^{k} & a_{3,3}^{k} & a_{1,4}^{k} \\
a_{4,1}^{k} & a_{4,2}^{k} & a_{4,3}^{k} & a_{1,4}^{k}
\end{array}\right]
$$

Notice that this is not the same thing as $A^{k}=\overbrace{A \cdot A \cdot \ldots \cdot A}^{k \text { times }}$. Suppose that all of the $a_{i, j}$ are real numbers, and that $A^{k}=A^{[k]}$ for $k=1,2,3,4$. Prove that $A^{k}=A^{[k]}$ for all $k \in \mathbb{N}$.

