
Math/CS 103 Professor: Padraic Bartlett

Homework 13: More Matrices!

Due 11/8/13, at the start of class. UCSB 2013

Thing I realized over the weekend: if you don’t know how to do problem 2 from HW#12,
it’s likely that the entire idea of compositions of linear maps will not make lots of sense, and
this problem set will fail. So, this HW starts off with a proof of said problem! After that,
it has two theoretical problems that build off of that, and four computational problems.
You should do three questions in total, out of the six listed. Even if you don’t do the two
theory problems, you should read their statements and the section afterwards that describes
how to use them, so that you can use their results in the computational section.

1 A Proof of Problem 2, HW#12

On the last homework, some of you (hopefully!) studied the following problem:

Problem. Take any pair of linear maps A,B : Rn → Rn with associated matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 , B =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n

...
...

. . .
...

bn,1 bn,2 . . . bn,n

 .
Let ~e1 denote the standard basis vector for Rn with a 1 in its 1st coördinate and 0’s
elsewhere. What is B ◦A(~e1)?

Answer. The answer is the following:

B ◦A(~e1) =
(
~a1 · ~b1, ~a1 · ~b2, . . . , ~a1 · ~bn

)
.

In this section, we present a proof of this claim!

Proof. To find B ◦A as applied to ~e1, we just apply A to ~e1, and then apply B to the result
of that calculation.

By definition, A(~e1) is just the first column of A: i.e.

(a1,1, a2,1, . . . an,1).

To calculate B(a1, a2, . . . an), we just use the fact that B is linear to write

B(a1,1, a2,1, . . . an,1) = B(a1,1, 0 . . . 0) +B(0, a2,1, 0 . . . 0) + . . .+B(0, . . . 0, an,1)

= a1,1B(~e1) + a2,1B(~e2) + . . .+ an,1B( ~en).
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From here, we just use the definition of B to see that B(~ei) is precisely the i-th column of
B, and therefore that

B(a1,1, a2,1 . . . an,1) = a1,1B(~e1) + a2,1B(~e2) + . . .+ an,1B( ~en)

= a1,1(b1,1, . . . bn,1) + a2,1(b1,2, . . . bn,2) + . . .+ an,1(b1,n, . . . , bn,n).

The first coördinate of this vector is precisely the sum

a1,1b1,1 + a2,1b1,2 + a3,1b1,3 + . . .+ an,1b1,n,

which we can recognize as the dot product ~a1 · ~b1. Similarly, the second coördinate of
B(a1,1, a2,1, . . . an,1) is just

a1,1b2,1 + a2,1b2,2 + a3,1b2,3 + . . .+ an,1b2,n.

Let ~ai denote the i-th column of A: i.e. ~ai = (a1,i, a2,i, . . . , am,i). Similarly, let ~bj denote

the j-th row of B: i.e. ~bj = (bj,1, bj,2, . . . , bj,m). If we do this, we can recognize the expression

above as the dot product ~a1 · ~b2. By similar logic, we can see that the k-th coördinate of
B(a1,1, a2,1, . . . an,1) is just the dot product of ~a1 and ~bk. Combining these observations
together proves our claim:

B ◦A(~e1) =
(
~a1 · ~b1, ~a1 · ~b2, . . . , ~a1 · ~bn

)
.

Yay, ok. Why do you care? Well, because it lets you understand generalizations!

2 Questions on matrix composition

1. Take any pair of linear maps A : Rn → Rm, B : Rm → Rk with associated matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 , B =


b1,1 b1,2 . . . b1,m
b2,1 b2,2 . . . b2,m

...
...

. . .
...

bk,1 bk,2 . . . bk,m

 .

Let ~ei denote the i-th standard basis vector for Rn, with a 1 in its i-th coördinate
and 0’s elsewhere. Let ~ai denote the i-th column of A: i.e. ~ai = (a1,i, a2,i, . . . , am,i).

Similarly, let ~bj denote the j-th row of B: i.e. ~bj = (bj,1, bj,2, . . . , bj,m).

By slightly modifying the proof above, prove that B ◦A applied to the standard basis
vector ~ei ∈ Rn is just the vector(

~ai · ~b1, ~ai · ~b2, . . . , ~ai · ~bk
)
.
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2. Assume that you’ve proven 1 above, even if you haven’t. By using the definition of
how to turn linear maps into matrices, show that the matrix corresponding to their
composition B ◦A : Rn → Rk is the k × n matrix

~b1 · ~a1 ~b1 · ~a2 . . . ~b1 · ~an
~b2 · ~a1 ~b2 · ~a2 . . . ~b2 · ~an
. . . . . .

. . . . . .
~bk · ~a1 ~bk · ~a2 . . . ~bk · ~an

 .

For those of you that have seen matrix multiplication before, that’s what we just
did. Basically, if you have two linear maps written as matrices, we can use the dot product
as described in question 2 to compose them! Even if you don’t solve problem 2, I highly
recommend you remember the result from problem 2, as it is an extremely useful tool for
composing matrices.

If you don’t quite get what these results are saying, maybe the following example will
help:

Example. Let T : R2 → R2 be the linear map

T =

[√
2
2 −

√
2
2√

2
2

√
2
2

]
,

and S : R2 → R2 be the linear map

S =

[
0 1
1 0

]
.

What is the matrix given by the composition S ◦ (T ◦ S)?

Answer. If we just apply problem 2 from the above section, we have

(T ◦ S) =

[√
2
2 −

√
2
2√

2
2

√
2
2

]
·
[
0 1
1 0

]
=

(√22 ,−√22 ) · (0, 1)
(√

2
2 ,−

√
2
2

)
· (1, 0)(√

2
2 ,
√
2
2

)
· (0, 1)

(√
2
2 ,
√
2
2

)
· (1, 0)


=

[
−
√
2

2

√
2
2√

2
2

√
2
2

]
.

Therefore, we have

S ◦ (T ◦ S) =

[
0 1
1 0

]
·

[
−
√
2

2

√
2
2√

2
2

√
2
2

]
=

(0, 1) ·
(
−
√
2
2 ,
√
2
2

)
(0, 1) ·

(√
2
2 ,
√
2
2

)
(1, 0) ·

(
−
√
2
2 ,
√
2
2

)
(1, 0) ·

(√
2
2 ,
√
2
2

)
=

[ √
2
2

√
2
2

−
√
2
2

√
2
2

]
.
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In other words, this is the map that sends (1, 0) to
(√

2
2 ,−

√
2
2

)
and (0, 1) to

(√
2
2 ,
√
2
2

)
. If

you recall our discussion from the past homework set, this is in fact the rotation matrix
that rotates R2 by −π/4!

We can double-check this answer by thinking geometrically: the map T is just the matrix
given by the linear map Tπ/4 that rotates space by π/4 radians, while the map S is the
matrix that flips the x and y-coördinates. Composing these maps as S ◦T ◦S, geometrically
speaking, should give you a map that first switches the x and y coordinates, then rotates
by π/4 in the “switched” space, then flips back — which is just rotation by −π/4!

3 Questions on things that actually involve concrete matrices

1. In the last HW, we looked at the map Tθ : R2 → R2, that rotates a vector in the plane
counterclockwise by theta. Specifically, we looked at this linear map, and showed that
it is the matrix

Tθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Take two such matrices Tθ, Tγ , and (using the matrix composition formula discussed
above!) calculate the matrix

Tθ ◦ Tγ .

Show that it is equal to the matrix Tγ+θ.

2. Find a linear map Eλ,i : Rn → Rn that multiplies its i-th coördinate by λ and does
not change any of the others. Write this map as a matrix. For an arbitrary n × n
matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 ,
find the composition Eλ,i ◦A.

3. Find a linear map E(i,j) : Rn → Rn that switches its i-th and j-th coördinates and
does not change any of the others. Write this map as a matrix. For an arbitrary n×n
matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 ,
find the composition E(i,j) ◦A.
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4. Find a linear map Eλi 7→j : Rn → Rn that adds λ copies of its i-th coördinate to its
j-th coördinate and does not change any of the others. Write this map as a matrix.
For an arbitrary n× n matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 ,
find the composition Eλi 7→j ◦A.

5. In HW #12, one linear map that we looked at was the identity map id(~x), that sends
a vector ~x to itself: i.e. id(~x) = ~x. We showed that this linear map corresponded to
the following matrix, which we called the identity matrix:

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


For any n ∈ N, find a matrix A such that An is the identity matrix, but Ak is not the
identity matrix, for any 1 ≤ k < n.
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