
Math/CS 103 Professor: Padraic Bartlett

Homework 12: Matrices

Due 11/4/13, at the start of class. UCSB 2013

Here’s an observation some of you have occasionally made on the HW:

Observation. Take a linear map T : Rn → Rm. Let the vectors ~e1, . . . ~en denote the
standard basis vectors for Rn: i.e. ~e1 = (1, 0, . . . 0), ~e2 = (0, 1, 0 . . . 0), . . . ~en = (0, 0 . . . 0, 1).

Then: if we know where T sends these basis vectors, then we know where T sends any
vector in Rn! Specifically: suppose we know the quantities

T (~e1), T (~e2), . . . T ( ~en).

Take any vector (x1, . . . xn) ∈ Rn. Because T is linear, we then have that

T (x1, . . . xn) = T (x1 · ~e1 + . . .+ xn ~en)

= x1T (~e1) + . . .+ xnT ( ~en).

In other words, we don’t actually have to calculate T (x1, . . . xn)! Instead, we can just use
our prior knowledge of what the T (~ei)’s are to figure this out indirectly.

This can be remarkably useful: as you’ve seen before, some maps are really hard to
understand in general, but very easy to evaluate on some set of basis vectors for Rn.

For example, recall homework 9, where you studied the rotation map Tθ : R2 → R2.
This map took a vector (x, y) and rotated it by angle θ in a counterclockwise direction
around the origin. For example, the vector (1, 0) was mapped to (cos(θ), sin(θ)), and the
vector (0, 1) would be mapped to (− sin(θ), cos(θ)), as the diagram below illustrates:

(1,0)θ cos(θ)
sin(θ)1

(cos(θ),sin(θ))
(0,1)

θ cos(θ)
sin(θ)

1
(-sin(θ),cos(θ))

Using this observation, if we know that this map Tθ is linear, then we can simply write

Tθ(x, y) = Tθ(x(1, 0) + y(0, 1)) = xTθ(1, 0) + yTθ(0, 1) = x(cos(θ), sin(θ)) + y(− sin(θ), cos(θ))

= (x cos(θ)− y sin(θ), x sin(θ) + y cos(θ)).
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This is a much simpler and easier way to calculate Tθ(x, y) than the direct fashion (as many
of you realized on said problem set :p) In fact, this technique is so valuable that we have
developed notation and definitions to specifically work with this idea!

Definition. Take a linear map T : Rn → Rm. Let the vectors ~e1, . . . ~en denote the standard
basis vectors for Rn: i.e. ~e1 = (1, 0, . . . 0), ~e2 = (0, 1, 0 . . . 0), . . . ~en = (0, 0 . . . 0, 1).

For each of the vectors T (~ei) in Rm, write

T (~ei) = (t1,i, t2,i, . . . , tm,i),

where the values ti,j are all real numbers
We turn T into an m× n matrix, i.e. a m× n grid of real numbers, as follows:

T −→ Tmatrix =


t1,1 t1,2 . . . t1,n
t2,1 t2,2 . . . t2,n

...
...

. . .
...

tm,1 tm,2 . . . tm,n

 .
In other words,

T −→ Tmatrix =


...

... . . .
...

T (~e1) T (~e2) . . . T ( ~en)
...

... . . .
...

 ,
Similarly, given some m× n matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 ,
we can interpret A as a linear map Amap : Rn to Rm as follows:

• For any of the standard basis vectors ~ei, we define Amap(~ei) to simply be the vector
(a1,i, . . . am,i).

• For any other vector (x1, . . . xn) ∈ Rn, we define Amap(x1, . . . xn) to simply be the
corrresponding linear combination of the ~ei’s: i.e.

Amap : (x1, . . . xn) := x1 ·Amap(~e1) + . . .+ xnAmap( ~en).

In practice, we will usually not bother writing the subscripts “map” and “matrix” on these
objects, and think of linear maps from Rn to Rm and m× n matrices as basically the same
things.
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For example, return to the map Tθ : R2 → R2. Because this map sends (1, 0) to
(cos(θ), sin(θ)), and (0, 1) to (− sin(θ), cos(θ)), we would express this map as a matrix as
follows:

Tθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
This problem set is split into two sections: a handful of theoretical properties about

matrices, and a handful of concrete calculations that ask you to find matrices associated
to various linear maps. Complete one problem from the theoretical section, and three
from the concrete section.

1 Theoretical properties of matrices

1. Take any linear map A : Rn → Rm. Let A have the associated matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 .
Denote the row vectors (ai,1, . . . ai,n) ∈ Rn of our matrix A with the vectors ~ai, for
shorthand. Show that for any ~x ∈ Rn, we have

A(~x) = (~x · ~a1, ~x · ~a2, . . . ~x · ~am)

2. Take any pair of linear maps A,B : Rn → Rn with associated matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

 , B =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n

...
...

. . .
...

bn,1 bn,2 . . . bn,n

 .
Calculate B ◦A when it is applied to ~e1 = (1, 0, 0, . . . 0).

3. Let A,B : Rn → Rm be a pair of linear maps, with associated matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 , B =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n

...
...

. . .
...

bm,1 bm,2 . . . bm,n

 .
Define the linear map (A+ B) : Rn → Rm as follows: for any ~x ∈ Rn, (A+ B)(~x) =
A(~x) +B(~x). Find the matrix corresponding to (A+B).
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2 Explicitly calculating matrices for various linear maps

There are several linear maps below. Pick three and write them as matrices.

1. T : R6 → R6, defined such that

T (u, v, w, x, y, z) = (z, y, x, w, v, u).

2. T : Rn → Rn−1, defined such that

T (x1, . . . xn) = (x2, x3, . . . xn).

3. S−1 ◦ T ◦ S : R4 → R4, where S : R4 → P3(R), T : P3(R)→ P3(R) are the maps

S(a, b, c, d) = (a+ bx+ cx2 + dx3), and

T
(
a+ bx+ cx2 + dx3

)
=

d

dx

(
a+ bx+ cx2 + dx3

)
.

4. R ◦ T ◦ S : R4 → R4, where S : R4 → P3(R), T : P3(R)→ P4(R) and R : P4(R)→ R5

are the maps

S(a, b, c, d) = (a+ bx+ cx2 + dx3),

T
(
a+ bx+ cx2 + dx3

)
=

∫ x

0
(a+ bt+ ct2 + dt3)dt, and

R
(
a+ bx+ cx2 + dx3 + ex4

)
= (a, b, c, d, e).

5. T : Rn → Rn, defined such that

T (~x) = ~x.

6. T : R4 → R4, defined such that

T (w, x, y, z) = (w,w + x,w + x+ y, w + x+ y + z).
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