Math/CS $103 \quad$ Professor: Padraic Bartlett

Homework 12: Matrices

Due 11/4/13, at the start of class.

Here's an observation some of you have occasionally made on the HW:
Observation. Take a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let the vectors $\overrightarrow{e_{1}}, \ldots \overrightarrow{e_{n}}$ denote the standard basis vectors for \mathbb{R}^{n} : i.e. $\overrightarrow{e_{1}}=(1,0, \ldots 0), \overrightarrow{e_{2}}=(0,1,0 \ldots 0), \ldots \overrightarrow{e_{n}}=(0,0 \ldots 0,1)$.

Then: if we know where T sends these basis vectors, then we know where T sends any vector in \mathbb{R}^{n} ! Specifically: suppose we know the quantities

$$
T\left(\overrightarrow{e_{1}}\right), T\left(\overrightarrow{e_{2}}\right), \ldots T\left(\overrightarrow{e_{n}}\right)
$$

Take any vector $\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}^{n}$. Because T is linear, we then have that

$$
\begin{aligned}
T\left(x_{1}, \ldots x_{n}\right) & =T\left(x_{1} \cdot \overrightarrow{e_{1}}+\ldots+x_{n} \overrightarrow{e_{n}}\right) \\
& =x_{1} T\left(\overrightarrow{e_{1}}\right)+\ldots+x_{n} T\left(\overrightarrow{e_{n}}\right) .
\end{aligned}
$$

In other words, we don't actually have to calculate $T\left(x_{1}, \ldots x_{n}\right)$! Instead, we can just use our prior knowledge of what the $T\left(\overrightarrow{e_{i}}\right)$'s are to figure this out indirectly.

This can be remarkably useful: as you've seen before, some maps are really hard to understand in general, but very easy to evaluate on some set of basis vectors for \mathbb{R}^{n}.

For example, recall homework 9 , where you studied the rotation map $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. This map took a vector (x, y) and rotated it by angle θ in a counterclockwise direction around the origin. For example, the vector $(1,0)$ was mapped to $(\cos (\theta), \sin (\theta))$, and the vector $(0,1)$ would be mapped to $(-\sin (\theta), \cos (\theta))$, as the diagram below illustrates:

Using this observation, if we know that this map T_{θ} is linear, then we can simply write

$$
\begin{aligned}
T_{\theta}(x, y)= & T_{\theta}(x(1,0)+y(0,1))=x T_{\theta}(1,0)+y T_{\theta}(0,1)=x(\cos (\theta), \sin (\theta))+y(-\sin (\theta), \cos (\theta)) \\
& =(x \cos (\theta)-y \sin (\theta), x \sin (\theta)+y \cos (\theta)) .
\end{aligned}
$$

This is a much simpler and easier way to calculate $T_{\theta}(x, y)$ than the direct fashion (as many of you realized on said problem set :p) In fact, this technique is so valuable that we have developed notation and definitions to specifically work with this idea!

Definition. Take a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let the vectors $\overrightarrow{e_{1}}, \ldots \overrightarrow{e_{n}}$ denote the standard basis vectors for \mathbb{R}^{n} : i.e. $\overrightarrow{e_{1}}=(1,0, \ldots 0), \overrightarrow{e_{2}}=(0,1,0 \ldots 0), \ldots \overrightarrow{e_{n}}=(0,0 \ldots 0,1)$.

For each of the vectors $T\left(\overrightarrow{e_{i}}\right)$ in \mathbb{R}^{m}, write

$$
T\left(\overrightarrow{e_{i}}\right)=\left(t_{1, i}, t_{2, i}, \ldots, t_{m, i}\right),
$$

where the values $t_{i, j}$ are all real numbers
We turn T into an $m \times n$ matrix, i.e. a $m \times n$ grid of real numbers, as follows:

$$
T \longrightarrow T_{\text {matrix }}=\left[\begin{array}{cccc}
t_{1,1} & t_{1,2} & \ldots & t_{1, n} \\
t_{2,1} & t_{2,2} & \ldots & t_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{m, 1} & t_{m, 2} & \ldots & t_{m, n}
\end{array}\right]
$$

In other words,

$$
T \longrightarrow T_{\text {matrix }}=\left[\begin{array}{cccc}
\vdots & \vdots & \ldots & \vdots \\
T\left(\overrightarrow{e_{1}}\right) & T\left(\overrightarrow{e_{2}}\right) & \ldots & T\left(\overrightarrow{e_{n}}\right) \\
\vdots & \vdots & \ldots & \vdots
\end{array}\right]
$$

Similarly, given some $m \times n$ matrix

$$
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right],
$$

we can interpret A as a linear map $A_{\text {map }}: \mathbb{R}^{n}$ to \mathbb{R}^{m} as follows:

- For any of the standard basis vectors $\overrightarrow{e_{i}}$, we define $A_{\text {map }}\left(\overrightarrow{e_{i}}\right)$ to simply be the vector $\left(a_{1, i}, \ldots a_{m, i}\right)$.
- For any other vector $\left(x_{1}, \ldots x_{n}\right) \in \mathbb{R}^{n}$, we define $A_{\text {map }}\left(x_{1}, \ldots x_{n}\right)$ to simply be the corrresponding linear combination of the $\overrightarrow{e_{i}}$'s: i.e.

$$
A_{\text {map }}:\left(x_{1}, \ldots x_{n}\right):=x_{1} \cdot A_{\text {map }}\left(\overrightarrow{e_{1}}\right)+\ldots+x_{n} A_{\text {map }}\left(\overrightarrow{e_{n}}\right) .
$$

In practice, we will usually not bother writing the subscripts "map" and "matrix" on these objects, and think of linear maps from \mathbb{R}^{n} to \mathbb{R}^{m} and $m \times n$ matrices as basically the same things.

For example, return to the map $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Because this map sends $(1,0)$ to $(\cos (\theta), \sin (\theta))$, and $(0,1)$ to $(-\sin (\theta), \cos (\theta))$, we would express this map as a matrix as follows:

$$
T_{\theta}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

This problem set is split into two sections: a handful of theoretical properties about matrices, and a handful of concrete calculations that ask you to find matrices associated to various linear maps. Complete one problem from the theoretical section, and three from the concrete section.

1 Theoretical properties of matrices

1. Take any linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let A have the associated matrix

$$
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right] .
$$

Denote the row vectors $\left(a_{i, 1}, \ldots a_{i, n}\right) \in \mathbb{R}^{n}$ of our matrix A with the vectors $\overrightarrow{a_{i}}$, for shorthand. Show that for any $\vec{x} \in \mathbb{R}^{n}$, we have

$$
A(\vec{x})=\left(\vec{x} \cdot \overrightarrow{a_{1}}, \vec{x} \cdot \overrightarrow{a_{2}}, \ldots \vec{x} \cdot \overrightarrow{a_{m}}\right)
$$

2. Take any pair of linear maps $A, B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with associated matrices

$$
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}
\end{array}\right], B=\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \ldots & b_{1, n} \\
b_{2,1} & b_{2,2} & \ldots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n, 1} & b_{n, 2} & \ldots & b_{n, n}
\end{array}\right] .
$$

Calculate $B \circ A$ when it is applied to $\overrightarrow{e_{1}}=(1,0,0, \ldots 0)$.
3. Let $A, B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a pair of linear maps, with associated matrices

$$
A=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right], B=\left[\begin{array}{cccc}
b_{1,1} & b_{1,2} & \ldots & b_{1, n} \\
b_{2,1} & b_{2,2} & \ldots & b_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m, 1} & b_{m, 2} & \ldots & b_{m, n}
\end{array}\right] .
$$

Define the linear map $(A+B): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ as follows: for any $\vec{x} \in \mathbb{R}^{n},(A+B)(\vec{x})=$ $A(\vec{x})+B(\vec{x})$. Find the matrix corresponding to $(A+B)$.

2 Explicitly calculating matrices for various linear maps

There are several linear maps below. Pick three and write them as matrices.

1. $T: \mathbb{R}^{6} \rightarrow \mathbb{R}^{6}$, defined such that

$$
T(u, v, w, x, y, z)=(z, y, x, w, v, u)
$$

2. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$, defined such that

$$
T\left(x_{1}, \ldots x_{n}\right)=\left(x_{2}, x_{3}, \ldots x_{n}\right)
$$

3. $S^{-1} \circ T \circ S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, where $S: \mathbb{R}^{4} \rightarrow \mathcal{P}_{3}(\mathbb{R}), T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{3}(\mathbb{R})$ are the maps

$$
\begin{aligned}
S(a, b, c, d) & =\left(a+b x+c x^{2}+d x^{3}\right), \text { and } \\
T\left(a+b x+c x^{2}+d x^{3}\right) & =\frac{d}{d x}\left(a+b x+c x^{2}+d x^{3}\right)
\end{aligned}
$$

4. $R \circ T \circ S: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, where $S: \mathbb{R}^{4} \rightarrow \mathcal{P}_{3}(\mathbb{R}), T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{4}(\mathbb{R})$ and $R: \mathcal{P}_{4}(\mathbb{R}) \rightarrow \mathbb{R}^{5}$ are the maps

$$
\begin{aligned}
S(a, b, c, d) & =\left(a+b x+c x^{2}+d x^{3}\right) \\
T\left(a+b x+c x^{2}+d x^{3}\right) & =\int_{0}^{x}\left(a+b t+c t^{2}+d t^{3}\right) d t, \text { and } \\
R\left(a+b x+c x^{2}+d x^{3}+e x^{4}\right) & =(a, b, c, d, e)
\end{aligned}
$$

5. $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, defined such that

$$
T(\vec{x})=\vec{x}
$$

6. $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$, defined such that

$$
T(w, x, y, z)=(w, w+x, w+x+y, w+x+y+z)
$$

