Math/CS 103	Professor: Padraic Bartlett
Homework 11: More Injections, Surjections and Linear Maps	
Due 11/1/13, at the start of class.	UCSB 2013

This problem set contains eight questions. Choose three of the eight problems below to complete by next class. Be ready and able to present your solutions if you have them, or your questions if you don't solve the problems!

1 Linear algebra-ish problems.

1. Suppose that S is a linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}$ with $\operatorname{null}(S)=\{(x, x+y, y): x, y \in \mathbb{R}\}$. Prove that S is surjective.
2. Let T be a linear map from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, such that range $(T)=\{(x, x+y, y) \mid x, y \in \mathbb{R}\}$. Show that T must be injective.
3. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a surjective linear map. Prove that T is an isomorphism.
4. (a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear map of the form $T(x, y)=(a x+b y, c x+d y)$. Show that T is an injection if and only if $a d-b c \neq 0$.
(b) How many of these maps exist if we limit a, b, c, d to integers between 1 and 50? (A general formula for a, b, c, d integers between 1 and n would also be interesting.)

2 Injection/surjection problems in general.

1. Is there a bijection between the set $[0,1]$ and the set $(0,1)$?
2. Is there a bijection between $(0,1)$ and \mathbb{R} ?
3. Given a set A, we say that a set B is a subset of A if every member of B is also a member of A. For example, if $A=\{w, x, y, z\}$ and $B=\{w, z\}$, then B is a subset of A, because every member of B is also a member of A. Conversely, the set $C=\{x, y, z, \alpha\}$ is not a subset of A, because the element α is a member of C and not a member of A. A special set that bears mentioning is the empty set, denoted \emptyset. This is the set that contains no elements.
Given a set A, the power set of A, denoted $\mathcal{P}(A)$, is the collection of all of the subsets of A. For example, the power set of $\{1,2,3\}$ is the set containing the following eight sets:

- \emptyset
- $\{3\}$
- $\{2,3\}$
- $\{1\}$
- $\{1,2\}$
- $\{1,2,3\}$
- $\{2\}$
- $\{1,3\}$

We write this as

$$
\mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

Show that for any set A, there is no injection from A to $\mathcal{P}(A)$. (In particular, make sure your proof works when A contains infinitely many elements.)
4. Is there an injection from $\mathcal{P}(\mathbb{N})$ to the real numbers \mathbb{R} ? Either construct one if it exists, or prove it cannot exist.

