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Mathematicians like to use graphs to describe lots of different things. Groups, electrical
networks, airplane routes, and the internet itself are all objects which graphs are used to
model; consequently, mathematicians have came up with several different definitions for the
word “graph” itself! We state several of these definitions here:

1 The Basics

Definition. A simple graph G with n vertices and m edges consists of the following two
objects:

1. a set V = {v1, . . . vn}, the members of which we call G’s vertices, and

2. a set E = {e1, . . . em}, the members of which we call G’s edges, where each edge ei is
an unordered pair of distinct elements in V , and no unordered pair is repeated. For
a given edge e = {v, w}, we will often refer to the two vertices v, w contained by e as
its endpoints.

Example. The following pair (V,E) defines a simple graph G on five vertices and five
edges:

• V = {1, 2, 3, 4, 5},

• E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}.

Something mathematicians like to do to quickly represent graphs is draw them, which we
can do by taking each vertex and assigining it a point in the plane, and taking each edge
and drawing a curve between the two vertices represented by that edge. For example, one
way to draw our graph G is the following:

However, this is not the only way to draw our graph! Another equally valid drawing is
presented here:

As mentioned before, there are other possible definitions of a graph:

Definition. A simple directed graph G with n vertices and m edges consists of the
following two objects:
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1. a set V = {v1, . . . vn} of vertices, and

2. a set E = {e1, . . . em} of edges, where each edge ei is an ordered pair of distinct
elements in V , where no ordered pair is repeated.

The only difference between this definition and the definition for simple unordered graphs
is that all of our edges have an ordering – i.e. the edge (a, b) is different from the edge (b, a).

Example. The following pair (V,E) defines a simple directed graph G on four vertices and
six edges:

• V = {1, 2, 3, 4},

• E = {(1, 2), (2, 1), (3, 4), (4, 3), (1, 3), (4, 2)}.

We can draw such a graph in the exact same method as before, provided that we put little
arrows on our edges to indicate which direction they’re traveling:

As mentioned before, there are other possible definitions of a graph:

Definition. A multigraph graph G with n vertices and m edges consists of the following
two objects:

1. a set V = {v1, . . . vn} of vertices, and

2. a set E = {e1, . . . em} of edges, where each edge ei is an ordered pair of elements in
V .

Note that in this definition we allow edges to be repeated, and furthermore that we allow
an edge to contain the same element twice.

Example. The following pair (V,E) defines a multigraph graph G on three vertices and
six edges:

• V = {1, 2, 3},

• E = {(1, 2)1, (1, 2)2, (1, 2)3, (2, 3)4, (2, 3)5, (3, 1)6}.

We can realize this graph as the following picture:

Typically, when a mathematician simply refers to a graph, they will mean a simple
graph. Throughout this course, we will usually work with simple graphs; if we want to refer
to any of the other concepts for graphs, we will explicitly say that we’re doing so.
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2 Graphs as Models

Before we start delving into the theory, we first show some of the ways in which graphs can
model some remarkably interesting problems:

Example. (Maps.) Suppose we start with a map M consisting of several countries, and
we want to find a way of assigning each country a color so that no two countries sharing
a border are the same color. How many colors do we need to do this? Well, consider the
following simple graph we can make out of our map, where we set

• V = the collection of countries on our map, and

• E = {{a, b} : a and b are countries that share a border.}

Then, our question is the following: given any graph that we can get from a map, how
many colors do we need to color its vertices so that no edge connects two vertices of the
same color?

The answer to this question is 4, and the problem itself is known as the Four-Color
Theorem – proven in 1976, it is one of the first problems in mathematics to have been
resolved with a computer. To this day, there are no non-computer-aided proofs known of
the four-color theorem.

Example. (Travel.) Suppose you’re a travelling salesman, going between cities in the
country to sell your product. Specifically, suppose you have a list of C cities that you have
to make it to, F a list of flights between these cities, and you’re starting in some city c ∈ C.
Is there some flight path you could take that would make it so you never had to visit any
city twice?

Well, this clearly depends on your lists C and F , and where you’re starting from. For
example, if your cities were {Tokyo, Detroit, Rio, Paris} and your flights were {{ Tokyo,
Detroit}, { Detroit, Rio}, {Rio, Paris }}, you could do this if you were starting in Tokyo or
Paris, but not if you started in Detroit or Rio.

A natural way to visualize this problem is with graph theory! Specifically, if we think
of C as the set of vertices and F as the set of edges, we can visualize such a travel map as
follows:

Phrased in this fashion, our question is the following: given a graph G, is there a path1

that visits every vertex exactly once?
Such a path is called a Hamiltonian path, and the question of whether such paths exist

on an arbitrary graph is NP -complete2.

1A path of length n is a sequence of alternating vertices and edges v0, e01, v1, e12, . . . vn from our graph
G, so that each edge ek,k+1 connects the vertex vk to the vertex vk+1. Intuitively, a path is just a way of
“walking around” on our graph for n steps.

2This means, roughly, that there is no “fast” way to find out whether such a path exists; basically, there
isn’t any way to find out if a graph has a Hamiltonian path that’s much faster than just trying out every
path and seeing if any of them work. Furthermore, if you *could* find a faster algorithm in general, the fact
that this problem is NP-complete would allow you to solve a ton of other really difficult problems (like how
to factor numbers into primes) quickly as well. See Wikipedia for a better description of what NP-complete
means.
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3 Several Key Graphs

In the field of graph theory, there are several graphs which come up enough to where we’ve
given them names. We list them here, along with some of their properties:

• The cycle graph Cn. The cycle graph on n vertices, Cn, is the simple graph on the
vertex set {v1, v2, . . . vn} with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}, {vn, v1}}.
The cycle graphs Cn can be drawn as n-gons, as depicted below:

• The path graph Pn. The path graph on n vertices, Pn, is the simple graph on
the vertex set {v1, v2, . . . vn} with edge set E(Cn) = {{v1, v2}, {v2, v3}, . . . {vn−1, vn}}.
The path graphs Pn can be drawn as paths of length n, as depicted below:

Every vertex in a Pn has degree 2, except for the two endpoints v1, vn, which have
degree 1. Pn contains n− 1 edges.

• The complete graph Kn. The complete graph on n vertices, Kn, is the simple
graph on the vertex set {v1, v2, . . . vn} that has every possible edge: in other words,
E(Kn) = {{vi, vj} : i 6= j}. We draw several of these graphs below:

Every vertex in a Kn has degree n− 1, as it has an edge connecting it to each of the
other n−1 vertices; as well, a Kn has n(n−1)/2 edges in total in it, by the degree-sum
formula. (Explicitly: every vertex has degree n− 1 and there are n vertices, therefore
the sum of the degrees of Kn’s vertices is n(n− 1). We’ve shown that this quantity is
twice the number of edges in the graph; dividing by 2 then tells us that the number
of edges in Kn is n(n− 1)/2, as claimed.)

• The complete bipartite graph Kn,m. The complete bipartite graph on n + m
vertices with part sizes n and m, Kn,m, is the following graph:

– V (Kn,m) = {v1, v2, . . . vn, w1, w2, . . . wm}.
– E(Kn,m) consists of all of the edges between the n-part and the m-part; in other

words, E(Kn,m) = {(vi, wj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The vertices vi all have degree m, as they have precisely m edges leaving them (one to
every vertex wj); similarly, the vertices wj all have degree n. By either the degree-sum
formula or just counting, we can see that there are nm edges in Kn,m.
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• The Petersen graph P The Petersen graph P is a graph on ten vertices, drawn
below:

The vertices in P all have degree three; by counting or the degree-sum formula, P has
15 edges.

4 Colorings of Graphs

So: one things mathematicians like to do with graphs is color them! We define what we
mean by “coloring” here:

Definition. We say that a graph G is k-colorable if we can assign the colors3 {1, . . . k}
to the vertices in V (G), in such a way that every vertex gets exactly one color and no edge
in E(G) has both of its endpoints colored the same color. We call such a coloring a proper
coloring, though sometimes where it’s clear what we mean we’ll just call it a coloring.

For a fixed graph G, if k is the smallest number such that G admits a k-coloring, we
say that the chromatic number of G is k, and write χ(G) = k.

To illustrate how this definitions goes, we work a few examples:

1. Kn: The complete graph on n vertices has chromatic number n. To see that it is at
least n, simply paint each of the vertices {v1, . . . vn} of V (Kn) a different color (say,
vi is painted i;) then every edge trivially has two endpoints of different colors. To
see that this is necessary, take any proper coloring of Kn, and look at any vertex vi:
because it’s connected to every other vertex, it cannot be the same color as any other
vertex (and therefore must have a different color than every other vertex, which forces
n colors.)

2. Edgeless graphs: If a graph G has no edges, its chromatic number is 1; just color every
vertex the same color. These are also the only graphs with chromatic number 1; any
graph with an edge needs at least two colors to properly color it, as both endpoints
of that edge cannot be the same color.

3. The pentagon: you can prove (do so!) that the pentagon cannot be colored with
only two colors. In fact, the chromatic number of the pentagon is 3: simply color its
vertices R,G,R,G,B in order by walking around the perimeter of the pentagon. (In
fact, this same idea can be used to show that any cycle of length 2k+ 1 is 3-colorable:
we know that these are not bipartite, and that they do admit 3-colorings via the
R,G,R,G . . . R,G,B-coloring described above.)

Ok! So: at this point in time, we’ve finally covered enough material to talk about what
I want this class to focus on: the unit distance graph!

5 The Unit Distance Graph Problem

Definition. Consider the following method for turning R2 into a graph:

• Vertices: all points in R2.

3By “color,” we just mean a collection of distinct labels, like (say) natural numbers. Actual colors have
the disadvantage of being finite in number, which is rather pesky.
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• Edges: connect any two points (a, b) and (c, d) iff the distance between them is exactly
1.

This graph is called the unit distance graph.

Visualizing this is kinda tricky — it’s got an absolutely insane number of vertices and
edges. However, we can ask a question about it:

Question. How many colors do we need in order to create a proper coloring of the unit
distance graph?

So: the answer isn’t immediately obvious (right?) Instead, what we’re going to try to
do is just bound the possible answers, to get an idea of what the answers might be.

How can we even bound such a thing? Well: to get a lower bound, it suffices to consider
finite graphs G that we can draw in the plane using only straight edges of length 1. Because
our graph on R2 must contain any such graph “inside” of itself, examining these graphs will
give us some easy lower bounds!

So, by examining a equilateral triangle T , which has χ(T ) = 3, we can see that

χ(R2) ≥ 3.

This is because it takes three colors to color an equilateral triangle’s vertices in such a way
that no edge has two endpoints of the same color.

Similarly, by examining the following pentagonal construction (called a Moser spindle,)

we can actually do one better and say that

χ(R2) ≥ 4.

Verify for yourself that you can’t color this graph with three colors!
Conversely: to exhibit an upper bound on χ(R2) of k, it suffices to create a way of

“painting” the plane with k-colors in such a way that no two points distance 1 apart get
the same color.

So: consider the following way to color the plane!

To be specific: start by tiling the plane with hexagons of diameter slightly less than 1.
Then, color the hexagons with seven colors as described above; i.e. repeat the color pattern
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gray, red, teal, yellow, blue, green, magenta

on each strip of hexagons, shifted two colors over for each strip. This gives you a mesh
of hexagons, so that any two hexagons of the same color are at least more than distance
1 apart. Therefore, any line segment of length 1 cannot bridge two different hexagons of
the same color! As well, because the hexagons have diameter slightly less than one, no line
segment of length 1 can lie entirely within a hexagon of the same color. Therefore, there
are no line segments of length 1 with both endpoints of the same color!

In other words, we have just proven that this is a proper coloring of the plane! So we
can color the plane with seven colors: i.e. we just showed that

χ(R2) ≤ 7.

These bounds on χ(R2) were not too crazy to find: it took us no more than seven pages
to get here, starting from the basic definition of a graph! As a result, we might hope that
completely resolving this question is something we could easily finish within a few more
pages.

Surprisingly: the answer is no! This problem – often called the Hadwiger-Nelson problem
in graph theory literature – has withstood attacks from the best minds in combinatorics
since the 1950’s, and is still open to this day. We know no better bounds than the ones
we’ve just presented.

Find some?
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