| Math 7h | Professor: Padraic Bartlett |
| :--- | ---: | ---: |
| Homework 5: Infinite Random Graphs | |
| Due Tuesday, week 6, at the start of class | UCSB 2014 |

Try one of the following three problems (or come up with something of your own!) You may need to look up definitions to do a problem; feel free to either stop by OH , email, use Wikipedia/etc to fill in gaps in your knowledge.

1. Take the Rado graph R from lecture. Delete finitely many vertices and edges from this graph, to get some new graph R^{\prime}. Is R^{\prime} isomorphic to R ? If it is, prove your claim; if it is not, give a construction that explains why this fails.
2. Consider the following graph on the vertex set \mathbb{N}, where we draw an edge $\{x, y\}$ whenever the x-th bit of y 's binary representation is 1 , or the y-th bit of x 's binary representation is 1 . Show that this graph is isomorphic to the Rado graph.
3. At the end of the lecture notes, we created a $\operatorname{map} \varphi$, and claimed it was an isomorphism. Prove that φ actually is an isomorphism!
