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The motivating question for this lecture is the following:

Question 1. Amongst any collection of 6 people, can you always find three mutual friends
or three mutual strangers?

Solution. Translating this into the language of graph theory, our question is the following:
if you color the edges of K6 red and blue, do you always have to create a triangle with
monochromatically red or monochromatically blue edges?

We claim that you will always do so. To see why: pick any red-blue coloring of K6, and
any vertex v ∈ K6. Because deg(v) = 5, we know that if the five edges are shaded red and
blue, there must be at least three of these edges that are the same color! Suppose (without
any loss of generality) that this color is red, and let {w1, w2, w3} be the endpoints of these
edges.

Then, there are two cases:

• There is some edge {wi, wj} that’s red. In this case, the vertices v, wi, wj form a red
triangle.

• Every edge {wi, wj} is blue. In this case, the vertices w1, w2, w3 form a blue triangle.

In either situation, we’ve found a monochrome triangle! So these always exist.

As mathematicians, whenever we prove something we’re really tempted to see if a gen-
eralization of it might be true. For example: in the above question, we showed that any
two-coloring of K6 creates a monochrome triangle (i.e. a K3.) One natural question we
could ask, then, is the following: given a fixed value of k, what values of Kn will a two-
coloring of Kn’s edges always force a Kk with monochrome edges to exist? Do such values
of n even exist?

As it turns out, the answer to this question is yes! The result is called Ramsey’s theorem:

Question 2. (Ramsey’s Theorem) Take any pair of integers k, l. There is some value n
such that if you color the edges of K6 either red or blue, then no matter how you choose
your colors, our graph either contains a red Kk or a blue Kl.

Proof. Let R(k, l) denote the smallest value of n such that if Kn’s edges are all colored
either red or blue, then Kn necessarily contains an all-red Kk or an all-blue Kl. We seek to
show that R is well-defined, and always exists.

We first note some simple starting cases. We have R(n, 1) = R(1, n) = 1, as any two-
coloring of Kn’s edges has a K1 in which all of the edges are whatever color we want (because
there are no edges in K1, as it is the graph with one vertex and no edges.)

As well, we have R(n, 2) = R(2, n) = n, because any red-blue two-coloring of Kn’s edges
either

• paints all of the edges the same color (which makes a monochrome Kn of one of our
colors), or

• paints at least one edge red and another blue (which makes monochrome K2’s of both
colors.)

Furthermore, we claim that we have the following recursive bound on the growth of
R(r, s) :

R(r, s) ≤ R(r, s− 1) + R(r − 1, s)

To prove this, we proceed by induction on the sum r + s. We’ve already proven the base
cases via the two examples above: so we take any pair r, s, and can assume that our bound
holds for any x, y with x + y < r + s.

Take a complete graph K on (R(r, s−1)+R(r−1, s)) many vertices, and color its edges
red and blue. We seek to show that there’s either a monochrome red Kr or monochrome
blue Ks in Kn.

To see this, we mimic the proof structure that worked for us in our game. Pick any
v ∈ K, and partition the rest of K’s vertices into two sets:
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• B′, which contains all of the vertices in K connected to v by a blue edge, and

• R′, which contains all of the vertices in K connected to v by a red edge.

Let B and R be the subgraphs1 of K induced by these vertices, respectively.
Because K has

R(r, s− 1) + R(r − 1, s) = |V (B)|+ |V (R)|+ 1

many vertices, either |V (B)| ≥ R(r, s− 1) or |V (R)| ≥ R(r − 1, s).
Suppose that we have |V (B)| ≥ R(r, s− 1). Because r+ s− 1 < r+ s, we can apply our

inductive hypothesis, which tells us that we have either

1. a red Kr inside of B, or

2. a blue Ks−1 inside of B, in which case (by combining this blue Ks−1 with v and its
edges to B) we have a blue Ks inside of our entire Kn.

These are the two cases we were looking for; so, in the situation where |V (B)| ≥ R(r, s−1),
we’ve proven our claim!

Similarly, if we have |R| ≥ R(r− 1, s), we can use induction to tell us that there’s either

1. a blue Ks inside of R, or

2. a red Kr−1 inside of R, in which case (by combining this red Kr−1 with v and its
edges to R) we have a red Kr inside of our entire Kn,

and we’re also done.

In the language of the proof above, the opening question for this lecture can be thought
of as showing R(3, 3) = 6.

In general, Ramsey numbers are ridiculously hard to find. Paul Erdős, a famous combi-
natorialist and mathematician, was fond of telling the following story about finding some-
thing as simple as R(6, 6):

Erdős asks us to imagine an alien force, vastly more powerful than us, landing on
Earth and demanding the value of R(5, 5) or they will destroy our planet. In that
case, he claims, we should marshal all our computers and all our mathematicians
and attempt to find the value. But suppose, instead, that they ask for R(6, 6).
In that case, he believes, we should attempt to destroy the aliens.

To illustrate some of the difficulty of finding such numbers, consider the following ques-
tion:

Question 3. What’s R(3, 4)?

Solution. Pick n such that for any red-blue coloring of Kn, we have neither a blue K3 nor
a red K4. Pick any x ∈ Kn, and again let

• B be the subgraph induced by the set of vertices in Kn connected to v by a blue edge,
and

• R be the subgraph induced by the set in Kn connected to v by a red edge.

If there is a blue edge in B, then x ∪ B will yield a blue K3; similarly, if there is a red K3

in R, x ∪ R yields a red K4. Because R(2, 4) = 4 and R(3, 3) = 6, we have that if neither
situation occurs, we must have |B| ≤ 3 and |R| ≤ 5. In other words, we’ve just shown
that for any vertex x ∈ Kn, we have degb(x) ≤ 3 and degr(x) ≤ 5. Consequently, the total
degree of x must be ≤ 8; i.e. n ≤ 9, and thus R(3, 4) ≤ 10.

Consider the case n = 9. In this case, each x must have degb(x) = 3 and degr(x) = 5,
where degr, degb denote the number of red edges leaving a vertex and blue edges leaving a
vertex, respectively. Consequently, the number of blue edges in Kn can be counted, via the
degree-sum formula, to be 1
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∑
x∈Kn

degb(x) = 27/2 = 13.5. Since we can’t have half of a
blue edge, this is also impossible! So R(3, 4) ≤ 9.

Conversely: examine the graph on the next page. The solid edges in this graph form
a subgraph containing no triangles, which can be seen by inspection. As well, picking any
four points on the boundary of a 8-cycle necessarily involves picking two opposite points or
two adjacent points; so there is no complete K4 amongst 4 points within the dashed edges.

1Given a graph G = (V,E) and a subset of vertices X ⊂ V from G, the subgraph induced by X is the
graph with vertex set X, where two vertices are connected in X whenever they are connected in G.
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Thus, R(3, 4) > 8; i.e. R(3, 4) = 9.
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