Instructions: Do problems here until you have spent about 90 minutes working seriously on these questions. Have fun!

Homework Problems

1. If you haven't before: prove the binomial theorem! I.e. show that for any positive integer n, and any x, y, we have

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

2. Here's a second, very pretty proof of Fermat's Little Theorem. Fill in the gaps!

Theorem 1. Let p be a prime number. Take any $a \neq 0$ in $\mathbb{Z} / p \mathbb{Z}$. Then

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

Proof. Suppose you have an alphabet with a letters in it. How many strings of length p can you create?
The answer here is clearly a^{p} : we have p places to put a letter, and a choices for each letter; therefore, we have $\overbrace{a \cdot a \cdot \ldots \cdot a}^{p \text { times }}=a^{p}$ many such strings.
Given any two strings, we say that they are similar if we can circularly shift the entries in one string to get the other string. For example, the following four strings are all similar:

$$
1121,1112,2111,1211
$$

Stack strings together into piles, where all of the strings in each pile are similar. Show that the following two statements are true:

- There are precisely a strings that consist of the same symbol repeated p times; these correspond to a distinct piles each with one string in them.
- In every other pile, there are precisely p strings. In other words, if you're a string that's not just the same symbol repeated p times, then there are exactly $p-1$ other strings that are similar to you.
Conclude from these two statements that $a^{p} \equiv a \bmod p$, and therefore that $a^{p-1} \equiv 1$ $\bmod p$.
Explicitly perform this grouping operation for $a=2, p=5$. (If you're stuck on this proof, start here first!)

3. A group is the following object: a set G along with an operation \cdot that satisfies the following four properties:

- Associativity: For all a, b and c in $G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
- Identity element: There exists an element e in G such that for all a in G, $e \cdot a=a \cdot e=a$.
- Inverse element: For each a in G, there is an element b in G such that $a \cdot b=$ $b \cdot a=e$, where e is an identity element.
(a) Show that $\mathbb{Z} / n \mathbb{Z}$ is a group, if we let the group operation be defined as addition $\bmod n$.
(b) Show that $\mathbb{Z} / n \mathbb{Z}$ is not a group, if we let the group operation be defined as multiplication $\bmod n$.
(c) Let $(\mathbb{Z} / n \mathbb{Z})^{\times}$denote the set of numbers $\{1, \ldots n-1\}$. Show that this is a group precisely whenever n is a prime number, if we let the group operation be defined as multiplication $\bmod n$.

4. Let G be a group with group operation • and identity element e. For any a in this group, let a^{k} denote the object $\overbrace{a \cdot a \cdot \ldots \cdot a}^{k \text { times }}$. Let n be the number of elements in this group. Prove that

$$
a^{n}=e .
$$

5. (a) Give me three groups that are not equal to $\langle\mathbb{Z} / n \mathbb{Z},+\rangle$ or $\left\langle(\mathbb{Z} / n \mathbb{Z})^{\times}, \cdot\right\rangle$. For each, explain why they are groups.
(b) Give me a group not in the above collection, containing only finitely many elements, that is not $\langle\mathbb{Z} / n \mathbb{Z},+\rangle$ or $\left\langle(\mathbb{Z} / n \mathbb{Z})^{\times}, \cdot\right\rangle$.
