Instructions: Five classes of problems are listed below. Pick one class of problem, and attempt to do the following:

- Find an algorithm that solves the problem. Check the runtime of your algorithm. (It will likely be huge.)
- Show that your problem is in NP: i.e. find an algorithm that will take in an instance of your problem and a "proof" that claims to show that instance is true, and check in polynomial time whether that solution holds.
- Then, try to improve your algorithm in such a way that your problem is in P. (This may be difficult.)
As always, work on problems until you either spend about 90 m on the questions or you solve a problem.

Homework Problems

1. Take an arbitrary $n \times n$ partial latin square P. Does it have a completion to an $n \times n$ latin square L,in which all of its rows and columns are filled?
2. In a graph $G=(V, E)$, a Hamiltonian cycle is a sequence of vertices and edges $\left(v_{1}, e_{12}, v_{2}, e_{23}, \ldots v_{n}, e_{n 1}\right.$, such that

- each vertex in V shows up in our sequence exactly once, and
- the edges $e_{i j}$ are all edges linking vertex v_{i} to vertex v_{j}.

In other words, a Hamiltonian cycle is a tour that starts and stops at the same vertex, and along the way visits every other vertex exactly once.
Given an arbitrary graph G on n vertices, does it have a Hamiltonian cycle?
3. A 3 -coloring of a graph G is a way to assign the colors $\{1,2,3\}$ to the vertices of a graph in such a way that no edge has both of its endpoints colored the same color.
Given a graph G, does it have a 3 -coloring?
4. Take a graph G. We can play a solitaire game, called pebbling, on this graph. We define this as follows:

- Setup: a graph G. Also, to every vertex of G, we assign some number of "pebbles," which we imagine are stacked on top of each vertex.
- Moves: Suppose we have an edge e_{12} connecting v_{1} to v_{2}, and another edge e_{23} connecting v_{2} and v_{3}. Suppose further that there is a pebble on v_{1} and v_{2}. We can then "jump" the pebble v_{1} over the pebble at v_{2} to v_{3} : i.e. we can remove one pebble from each of v_{1} and v_{2}, and place a pebble on v_{3}.
- A game is cleared if we can reduce it to having only one pebble on the entirety of the board.

Given an arbitrary graph G on n vertices, and some arrangement of n pebbles on G, can this game ever be "cleared"?
5. Consider the following puzzle:

- Take a $n \times n$ board. To set up a puzzle, place some red and blue stones on the squares in the grid, so that each square is either empty, contains a blue stone, or contains a red stone.
- The goal of this puzzle is to remove stones so that the following properties hold:
- Every row contains at least one stone.
- No row contains both a red and a blue stone.

For some initial configurations of stones, this is impossible (find one!).
Given a game on an $n \times n$ board, can you solve this puzzle?

