Homework 4: Ramsey Theory

Due 10/29/13, at the start of class

Instructions: Choose one of the problems below, and work on it until either:

1. You solve the problem, or
2. You have spent about 90 minutes working seriously on the problem.

Homework Problems

1. A proper k-edge coloring of a graph $G=(V, E)$ is a way to assign k distinct colors to the edges of the graph G in such a way that no vertex is incident with two distinct edges of the same color. Find the edge-chromatic number of the following graphs:

- K_{n}.
- The ladder graphs L_{n}, for any n (depicted below for $n=1,2,3,4,5$.)

- The Petersen graph.
- The Grötzch graph (depicted below.)

2. Find $R(3,5)$.
3. We have shown that the Ramsey numbers have bounded growth from above. Can you find an explicit bound for the growth of the diagonal Ramsey numbers $R(n, n)$? More specifically, can you find a function $f(n)$ such that $R(n, n) \leq f(n)$? How small can you get $f(n)$ to be?
4. Find a construction that shows $R(3, t+1)>3 t-1$.
5. Show that every set of $B=\left\{b_{1}, \ldots b_{n}\right\}$ of n nonzero integers contains a sum-free ${ }^{1}$ subset of size $\geq n / 3$.
[^0]
[^0]: ${ }^{1}$ A subset of \mathbb{R} is called sum-free if adding any two elements in the subset will never give you an element of the subset.

