Homework 3: Graph Theory

Due 10/22/13, at the start of class

UCSB 2013

Instructions: Choose one of the problems below, and work on it until either:

- 1. You solve the problem, or
- 2. You have spent about 90 minutes working seriously on the problem.

Homework Problems

- 1. (*) A graph G is called **Eulerian** if it contains a path P that satisfies the following two properties:
 - *P* starts and ends on the same vertex.
 - *P* uses every edge in *G* exactly once.

Show that a graph G is Eulerian if and only if the degree of every vertex in G is even.

2. A graceful labeling of a graph with E edges is a labeling l(v) of its vertices with distinct integers from the set $\{0 \dots E\}$, such that each edge $\{u, v\}$ is uniquely determined by the difference |l(u) - l(v)|. A graph is called graceful if it has a graceful labeling.

Show that all paths P_n are graceful.

- 3. Show that K_n is graceful if and only if $n \leq 4$.
- 4. A **tree** is a graph that does not contain any copies of the cycle graphs C_n , and is also connected (i.e. given any two vertices in our graph, there is a path of edges that goes from the first vertex to the second.)

Show that all trees are graceful.

- 5. Consider the game on six vertices we played at the end of class:
 - Set-up: a chalk board with six vertices drawn on it; two players, one with a piece of red chalk, the other with a piece of blue chalk.
 - Players alternate drawing edges between vertices on our board. When drawing edges, no player can draw an edge that has been drawn on a previous turn.
 - A player loses if they ever complete a triangle made entirely out of the color of chalk they are using.

Show that no matter how these two players play, someone will eventually lose: i.e. that there is no way to color the edges of K_6 red and blue in such a way that there is no monochromatic triangle.