Homework 2: Sorting Algorithms

Due 10/15/13, at the start of class

Instructions: Choose one of the problems below, and work on it until either:

- 1. You solve the problem, or
- 2. You have spent about 90 minutes working seriously on the problem.

Homework Problems

- 1. Create an algorithm that takes as input any configuration of chess pieces on a chessboard along with a player's turn, and outputs which player will win if both play perfectly. (Hint: this does not need to be a particuarly fast algorithm. In fact, it probably needs to be insanely slow.)
- 2. The Towers of Hanoi is the following puzzle: Start with 3 rods. On one rod, place n disks with radii $1, 2, \ldots n$, so that the disk with radius n is on the bottom, the disk with radius n-1 is on top of that disk, and so on/so forth.

The goal of this puzzle is to move all of the disks from one rod to another rod, obeying the following rules:

- You can move only one disk at a time.
- Each move consists of taking the top disk off of some rod and placing it on another rod.
- You cannot place a disk A on top of any disk B with radius smaller than A.

Find a recursive algorithm for solving this puzzle! How long does it take to complete your solution? Suppose that you can perform a move once every second, and you can perform moves until the heat death of the universe $(10^{100} \text{ years, say.})$ What is the largest puzzle you can solve?

- 3. Consider the following algorithm (Stoogesort¹!) for sorting a list: Take as input a list $L = (l_1, \ldots l_n)$.
 - If your list contains one or two elements, sort it by just looking at the list.
 - Otherwise, the list contains ≥ 3 elements. Let $M = \lfloor 2/3 \rfloor$.
 - Stoogesort the list $(l_1, \ldots l_m)$.
 - Stoogesort the list $(l_{n-m}, \ldots l_n)$.
 - Stoogesort the list $(l_1, \ldots l_m)$.

Prove that this algorithm sorts any list.

4. Suppose you have a stack of n pancakes of different sizes. You want to sort these pancakes so that smaller pancakes are on top of larger pancakes!

However, the only tool you have to do this is a spatula. The spatula can **flip** pancakes, as described here:

 $^{^1\}mathrm{Named}$ after the comedy routines of the Three Stooges; specifically, the ones where each stooge hits the other two.

- Suppose we have a stack of pancakes. Write this stack as an ordered list (p_1, \ldots, p_n) , where the first element in our list is at the bottom, the second is directly on top of the first, and so on/so forth.
- We can insert our spatula at any point in the stack. From there, we can **flip** all of the entries above where we put our spatula. For example, suppose we have the stack $(p_1, p_2, p_3, p_4, p_5, p_6)$. We could insert our spatula between pancakes p_3 and p_4 , and flip the stack (p_4, p_5, p_6) to get the new arrangement

$(p_1, p_2, p_3, p_6, p_5, p_4).$

(Fun fact: the one and only research paper written by Bill Gates studied this problem.) Describe an algorithm to sort an arbitrary stack of n pancakes, using as few flips as possible. How many flips does your algorithm need, in the worst-case scenario?

- 5. Consider the following recursive algorithm Factor(n) for finding n!, given a nonnegative integer input n:
 - If n = 0 or 1, return 1.
 - Otherwise, return $n \cdot Factor(n-1)$.
 - (a) How many steps does this take to run?
 - (b) How many bits are required to write n! in binary, roughly speaking? (Use Stirling's approximation, which says that $n! \approx \sqrt{2\pi n} \cdot (n/e)^n$.)
 - (c) Given your answer above, you might believe that the run time you calculated in (a) is far too large for such a simple task! Consider instead the following better algorithm Factor2(n,m) which computes (n!)/(n-m)!:
 - If m = 0, return 1.
 - Othewise, if m = 1, return n.
 - Otherwise, return $Factor2(n, \lfloor m/2 \rfloor) \cdot Factor2(n \lfloor m/2 \rfloor, \lceil m/2 \rceil)$.
 - How many steps does Factor2(n, n) take to calculate n!/0!, roughly?