
Math 137B Professor: Padraic Bartlett

Lecture 6: Sequential Dynamical Systems

Weeks 8-9 UCSB 2014

(Relevant source material: the first four chapters of Mortveit and Reidys’s “An Intro-
duction to Sequential Dynamical Systems.)

Throughout this course, we have examined the intersections of graph theory with a
number of other areas in mathematics and the sciences — namely, the fields of electrical
engineering, algebra, and topology. In our last few weeks we will look at another such
intersection: the field of sequential dynamical systems, in which we will use the language
and tools of graph theory to examine discretized versions of dynamical systems and their
applications.

We start with a definition:

Definition. A sequential dynamical system, abbreviated to SDS throughout this talk,
consists of the following collection of objects:

1. A base graph, which is a graph G on n vertices {v1, . . . vn}. This graph can either be
directed or undirected; if we do not specify which, we will assume that G is undirected.

2. A collection of vertex states K. Unless otherwise stated, K will be assumed to be
finite. We will frequently work with K = Fp; the field structure of Fp is useful for
proving theorems. More specifically, K = F2 is an incredibly natural object to use to
describe any sort of binary phenomena, and will be our most common choice of K.

3. A collection of vertex functions fv, that take in the state of a vertex and the states
of the neighbors of that vertex, and output a vertex state. Formally, if n(v) denotes
the number of neighbors of v, we think of these functions as maps Kn(v)+1 → K. We
think of these as “local” update rules: i.e. these functions give us rules for what the
vertex v will be at time t + 1, if at time t we know its state and the states of its
neighbors.

4. An update order π = (vπ(1), . . . vπ(n)), that consists of some permutation of the ver-
tices of G. (More generally, we can sometimes work with “word-update orders,” where
we let the update order merely be a list of vertices in G, instead of a permutation;
this lets us consider lists that omit some vertices and repeat others. Unless explicitly
stated, however, we will assume all of our update orders are permutations.)

Given such a set of objects, make the following definitions:

1. Call any element ~x ∈ Kn a system state, and associate it to the vertices of G by
labeling vertex vi with the state xi.

2. Given any vertex state ~x and any vertex v, let ~xv denote the array of ~x’s coordinates
that correspond to the vertex v and its neighbors.

1

3. For each vertex v and associated vertex function fv, define the local function Fv :
Kn → Kn as the following map:

Fv(~x) = (x1, x2, . . . fv(~xv), . . . xn−1, xn).

In other words, the local function Fv is simply the map that takes in any system state
~x, and “updates” the coordinate corresponding to v with fv(~xv).

4. Finally, we define the SDS-map [FG, π] as the composition of these local functions
in the order given by the update order: i.e.

[FG, π] = Fvπ(n) ◦ Fvπ(n−1)
◦ . . . ◦ Fvπ(2) ◦ Fvπ(1) .

In contrast to how the maps Fv were “local” updates that changed the value at one
vertex, we think of [FG, π] as a “system update map:” given any initial state ~x,
it tells us how ~x changes after we run it through all of our local functions using the
update order.

Conceptually, we think of applying [FG, π] to a given initial state as “advancing”
our SDS forward in time one step. We will often be interested in repeatedly applying
[FG, π] to various states and studying the long-term behavior of how these states move
around: i.e. if we start from a fixed state and repeatedly apply our system update
map, will we return to our original state? How long will it take? Where do we go
along the way?

To understand the above definition, it is useful to look at a toy example. Consider the
following fairly simple SDS on four vertices:

Example. Consider the following SDS:

1. Base graph: C4, the unoriented cycle on four vertices, with vertex set v1, v2, v3, v4 and
edges v1 ↔ v2, v2 ↔ v3, v3 ↔ v4, v4 ↔ v1.

2. Vertex state set: F2.

3. Vertex functions: fv = nor3(~xv) : F3
2 → F2, that returns 1 if all of its arguments are

0, and 0 otherwise.

4. The update order (v1, v2, v3, v4).

Suppose that our SDS starts with the initial state (0, 0, 0, 0). What happens when we
apply our system update map to this initial state?

Well:

1. First, we apply the function Fv1 to our initial state (0, 0, 0, 0). This takes in the vector
(0, 0, 0, 0), and replaces it with (fv1(~0v), 0, 0, 0). In particular, note that ~0v, the vector
formed by the states of v and its neighbors is (0, 0, 0), and all of our vertex update
functions are nor functions; therefore, this expression is just (nor3(0, 0, 0), 0, 0, 0) =
(1, 0, 0, 0).

2

2. Now, we apply Fv2 to this new state (1, 0, 0, 0): because the state of v2 and its neigh-
bors is currently (1, 0, 0), this yields (1, fv2(1, 0, 0), 0, 0) = (1, 0, 0, 0).

3. Now, we apply Fv3 to this state (1, 0, 0, 0): as before, this yields (1, 0, fv3(0, 0, 0), 0) =
(1, 0, 1, 0).

4. Finally, we apply Fv4 to this state (1, 0, 1, 0):, this yields (1, 0, 1, fv4(1, 0, 1)) = (1, 0, 1, 0).

This tells us that [NorC4 , (v1, v2, v3, v4)](0, 0, 0, 0) = (1, 0, 1, 0).

The question we studied above — given a SDS, how does it interact with the various
possible system states? — is a very commonly studied problem, and as such has a pair of
useful visual interpretations.

In the general case where K is just some finite set, we can always form something called
the phase space diagram for our SDS:

Definition. Given a SDS with system update map [FG, π], we define the phase space
diagram for this SDS as the following directed graph:

1. Vertices: the elements of Kn.

2. Edges: draw a directed edge from ~x to ~y whenever [FG, π](~x) = ~y.

We illustrate this object for the SDS [NorC4 , (v1, v2, v3, v4)] that we studied earlier:
this was created by applying the map [NorC4 , (v1, v2, v3, v4)] to each of the sixteen possible
initial states in F4

2. If you are still not confident in your skills at applying update maps,
double-check some of the calculations shown below!

Notice that this diagram is particularly sensitive to changes in the update order. For
example, this is the phase space diagram for [NorC4 , (∗ ∗ ∗ ∗ ∗∗)], which is the same SDS as
before except with a different update order:

Notice that the structure of this phase diagram is different from our earlier phase diagram;
this perhaps helps to illustrate that the update order for a given SDS is very important,
and can materially change the behavior of a SDS as much as its update functions!

In the special case where a SDS’s collection of vertex states is F2, there is another
convenient way to visualize these state changes: a space-time diagram. We make the
definitions needed to describe this object here:

Definition. Take any SDS with system update map [FG, π], along with some initial state
~x for our system. We define the forward orbit of ~x under this map as the sequence

O+(~x) =
(
~x, [FG, π](~x), [FG, π]2(~x), [FG, π]3(~x), . . .

)
This object is sometimes referred to as a “time series,” for fairly natural reasons: if our
SDS-map is representing how our system changes over one time step, this sequence tells us
how our system with initial state ~x behaves over time!

3

In the event that our SDS-map [FG, π] is bijective, then there is a well-defined notion
of [FG, π]−k for any k. This lets us define the notion of the orbit of ~x:

O(~x) =
(
. . . , [FG, π]−2(~x), [FG, π]−1(~x), ~x, [FG, π](~x), [FG, π]2(~x), . . .

)
This is like the same object as above, except we can “rewind” time and see what states
eventually lead to our initial state ~x as well.

Definition. Suppose that we have a SDS-map [FG, π] where our vertex states come from
F2. For any initial state ~x, the space-time diagram corresponding to this initial state and
SDS map is the following array: index the columns {1, . . . n} of our array by the vertices
{v1, . . . vn} in G, and color the cells of row k black (1) or white (0) to correspond to the
system state [FG, π]k(~x).

We draw an example here, for the SDS we have been studying throughout this talk:

We typically draw these space-time diagrams until they begin to loop: i.e. until we have
reached a state that we have reached earlier. Note that as illustrated in the example above,
this looping does not necessarily need to return to the state ~x that our system started with:
it is very possible that the state we start at is one we can never return to. However, because
there are finitely many states and finitely many vertices, we are guaranteed that our system
must eventually repeat a state that it has previously visited, and thereby enter a loop.

1 Examples of Sequential Dynamical Systems

One of the nice things about sequential dynamical systems is that their definition is re-
markably broad; it is easy to describe many commonly-studied systems using the language
of SDSs. We list a few examples here:

1. Suppose that you want to study the spread of some illness, say the flu, over a fixed
population in a given day. A SDS (or more accurately, a word-SDS, where we let our
update order potentially repeat vertices) is a natural way to model this phenomena.
Here is one way that this could be set up:

• Suppose that we have n people that meet and interact throughout the day. Give
each of these people their own vertex vi, and moreover give each meeting that
occurs throughout the day its own vertex ej . Assume that these event vertices
ej are indexed by the times at which they occur: i.e. event e1 is the first event
that happens, followed by event e2, and so on/so forth. Connect each vertex vi
to each event ej that person i is a part of throughout the day.

• Our vertex state set, for its people, consists of two pieces of information. First,
each person has some sort of health status (healthy, sick, beginning to become
sick, vaccinated, recovering, etc.) Second, each person is currently at some event
ej . Events get some sort of overall score, that corresponds to the number of
sick/healthy people at said event.

4

• Our vertex functions are different for a person or for an event:

– The update function for an event ej takes in the health statuses of all of the
people at that event, and updates ej to represent the aggregate “health” of
the people at that event.

– The update function for a person xj looks up the current event this person
is at using ej along with xj ’s current health, and updates their health. This
then updates the person’s location to the next place they vist during the
day. (If you want, you could replace this location update function with a
randomized update, in the event that you know people’s overall behaviors
but not their exact behavior for a given day.)

• Our update order is given by the events in a given day: in order, we process each
event ei followed by its participants.

Iterating this process over a series of days models the overall health of our population!

2. Task scheduling. Suppose that you have some sort of task that you can break down
into a number of subtasks τi. Some of these tasks τi may “depend” on other tasks τj :
i.e. there may be certain parts of our problem that cannot be started until we have
completed other parts of our problem. We can represent this information by using a
directed graph defined as follows:

• Vertices: the tasks τj .

• Edges: draw an edge from τi to τj if τi depends on τj .

Assume that we have the ability to solve each of the individual tasks τj . What is the
best “order” to try to complete our tasks in? In other words: suppose that we are
trying to create a program (for a computer) or workflow (for a company) that orders
our tasks in some list. What is the best ordering for us to consider?

One way to answer this question is via a SDS! Consider the following extension of our
graph above to a SDS:

• Any task τi has two possible states: either not completed (0) or completed (1).

• For any task τi, the update function for τi works as follows: look at all of the
tasks with edges pointing to τi. If all of those tasks are completed (1), then all
of the prerequisites for starting τi have been satisfied. Therefore, we can now
complete τi: change τi to 1.

Otherwise, τi is not yet workable. Do not change τi’s status.

• An update order is some ordering π of our tasks.

Let [Tτ , π] denote the SDS described above. Starting from the initial state where each
task is set to 0, we are interested in determining how many times we must apply [Tτ , π]
until our SDS’s system state is the all-1’s vector (i.e. where each task is completed!) In
particular, we are interested in determining what update order π requires the smallest
number of consecutive applications of [Tτ , π] to get to this all-1’s vector: this is in a
sense the “most efficient” ordering for us to prioritize our tasks.

5

3. Cellular automata, as mentioned in class, are closely related to sequential dynamical
systems in a number of ways. Formally, we define a cellular automaton over Zk
with states in F2 as the following set of objects:

Graph: The integer lattice Zk. Sometimes, we will work with (Z/nZ)k instead, in cases
where we do not want to work with an infinite grid.

States: Each vertex has a state in F2. Typically, we ask that only finitely many vertices
correspond to the state 1, which we think of as denoting “life” or “activity;”
conversely, we regard 0 as denoting death or quiescence.

Neighborhood: The Moore neighborhood1 of any vertex ~x consists of all vertices ~x′ such that
|xi − x′i| ≤ 1, for every coördinate i. So, for a cellular automaton on Z2, each
vertex has eight vertices in its neighborhood.

Local update function: Some function f : F3k
2 → F2, that takes in the state of a vertex and its neighbors

and outputs some updated state for that vertex.

Initial state: Some element ~x ∈ (F2)
Zk that describes the initial state of every vertex in Zk.

Given a cellular automaton, we can define its global update function as the map
Φf that applies the local update map f to the state of every vertex simultaneously.
In this sense, a cellular automaton is not a SDS, as its update functions don’t have
a set order: they just all occur at once. However, they can be studied using similar
techniques!

We think of a given cellular automaton as modeling some abstracted petri dish of
bacteria, where a given grid either is alive or dead based on the local behavior of itself
and its neighbors; in this sense, the update functions are representing various sorts of
rules that determine

One thing that bears noting, given the example of cellular automata above, is the idea
of sequential versus simultaneous in our dynamical systems. Throughout this class, we
will typically assume that the update maps we apply are sequential in nature: i.e. that
there is some set order π in which we apply our maps. This is a fairly natural setting for
modeling processes with any sort of sense of causality: i.e. computer programs typically
have a sequential ordering of cause and effect. However, there are many natural settings
where one would want to study simultaneous update orders, where we apply all of our
maps simultaneously: for example, our cellular automata above are naturally modeled by
a simultaneous system, where we are advancing our entire petri dish one step in time at
once, rather than having some cells arbitrarily “go first.”

In practice, any phenomena that you capture with a simultaneous dynamical system can
be modeled with a sequential dynamical system. Take any dynamical system in which we
want to model all of our update maps occurring simultaneously, and consider the following
construction:

1There are, of course, many notions of neighborhood one could take. For example, you could consider as
the neighborhood of any vertex all of the vertices that are distance at most one from this vertex; this is the
Von Neumann notion of neighborhood. We will work with Moore neighborhoods unless otherwise specified.

6

1. Base graph: let G denote the original simultaneous dynamical system’s base graph.
Create a copy v′ of each vertex v in G, and connect that copied vertex to v and all
of v’s neighbors. Call this collection H, and think of it as the “temporary” update
graph.

2. States: same stats as for the simultaneous system.

3. Update functions: Take any copied vertex v′ in H, that corresponds to some vertex
v ∈ G. The vertex v ∈ G had some original update function fv, that took in the
states of v and its neighbors and output some state. Give v′ that exact same update
function: i.e. to update v′, ignore whatever state v′ has, and instead look at the states
of v and its neighbors. Update v′ to that state.

As well, assign to each vertex v ∈ G the update function that looks up the state of
v′, the cloned copy of v, and assigns that state to v itself.

4. Finally, our update order is any ordering of the vertices in H, followed by any ordering
of the vertices in G.

If you run this process, the following things happen:

• First, we will assign each vertex v′ in H the state that the corresponding vertex in
v would get if we were running a simultaneous update system. Notice that because
we only change values in H, this is indeed preserving the simultaneous nature that
we are trying to simulate: i.e. after we update all of H, we have not yet changed any
values in G.

• Now, we copy all of those H-states back over onto G. After doing this, we have
effectively updated each vertex in G “simultaneously,” in the sense that each vertex
was updated using only the initial state that we had at the start of our update process.

You can think of the graph H above as the “memory” for our update process on G: i.e. we
first calculate what all of G’s states will be when we simultaneously update, and then we
use this precalculated information to actually update G. We illustrate an example below:

2 Properties of Sequential Dynamical Systems: Fixed Points

One of the main virtues of sequential dynamical systems is that we can describe so very
many things as a SDS of some sort. An unfortunate consequence is that it is correspondingly
hard to deduce properties that hold for all sequential dynamical systems; if a system can
describe lots of different kinds of phenomena, then we would expect it to be harder to
deduce any sorts of “universal” properties for such systems!

However, if we limit the scope of our systems somewhat — i.e. to sequential dynamical
systems with certain nice update function sets, or to systems with certain desirable prop-
erties — it turns out that we can actually make some mathematically useful observations!
In this section, we make the first few such observations for this class. When reading these

7

results, don’t worry so much about the overall utility of the specific claim being made —
rather, think of these results as illustrating the kinds of statements and claims that one can
study when working with a SDS!

The first concept we will work with is a fairly natural one from the dynamical-systems
standpoint: the concept of fixed points.

Definition. Consider a SDS with system update map [FG, π]. A fixed point of this SDS
is some initial state ~x such that [FG, π](~x) = ~x; i.e. it is an initial state that is unchanged
when we apply [FG, π].

One quick and fairly useful observation we can make about fixed points is that they do
not depend on the update order of our SDS:

Observation. Suppose that we have a SDS with system update map [FG, π] that has a
fixed point ~x. Suppose we replace π with any other update order π, to get a SDS on the
same base graph/vertex state/local function set, with system update map [FG, π

′]. Then ~x
is also a fixed point of this new system update map.

Proof. This is actually remarkably easy to see. Notice that by definition, we have

[FG, π] = Fvπ(1) ◦ . . . ◦ Fvπ(n) ,

where each Fvi is the local function defined by

Fvi(~x) = (x1, . . . xi−1, fvi(~xvi), xi+1, . . . xn) .

In particular, notice the following two things:

• Each Fvi only changes the i-th coördinate of any input they receive, and leaves all of
the other coordinates untouched.

• In particular, suppose for a moment that fvi(~xvi) 6= xi. Then the i-th component
of Fvi(~x) will not be equal to xi. Then, because no other Fvj can change this i-th
coördinate, the i-th coördinate of [FG, π](~x) cannot be equal to xi, and therefore ~x
cannot be a fixed point.

• The contrapositive of the above point then tells us that if ~x is a fixed point, then
fvi(~xvi) = xi, for all i. In particular, this tells us that Fvi(~x) = ~x for every i, as these
functions do not change the one coördinate that they can change!

• In other words, we have shown that each Fvi sends ~x to ~x. Therefore, it does not
matter in what order we compose them; any string of Fvi ’s applied to ~x in any order
will yield a function that sends ~x to ~x.

This proves our claim: we have shown that if ~x is a fixed point of a SDS under one update
order, then it is a fixed point of our SDS under any update order!

8

This stands in sharp contrast to the existence of states of period k (i.e. a state ~x such
that [FG, π]k(~x) = ~x, and [Fg, π]l(~x) 6= ~x, for any positive natural number l < k.) As we
saw in our earlier examples where we looked at [NorC4 , π] under different permutations π,
the underlying phase state can change dramatically when we change π: i.e. in one case we
got cycles of length ****, while in the other we had ****.

In many situations, a fixed point is a kind of phenomena that we may want to either
avoid or insure exists. For example, suppose that we are modeling some sort of mixing
process. Our graph could be a grid representing some sort of fluid, and the states of our
vertices could correspond to the total flow of fluid through each cell. A fixed point here
corresponds to some initial state that when we update our flow returns to itself: this could
be either undesirable (if we want our process to “mix” our fluid, we may want to avoid fixed
points) or desirable (we could want a way to sometimes stir our fluid predictably, i.e. in a
way that comes back to itself when we finish.)

It turns out that if we restrict ourselves to sufficiently “nice” families of vertex update
functions: i.e. vertex functions over the state set F2, that are symmetric2, we can actually
make some fairly strong claims:

Theorem. Suppose that {fi}i∈I is some collection of symmetric functions from Fki2 → F2,
with the following property:

• For any k, there is a fi that takes in inputs from Fk2.

• Take any graph G and update order π. Build a SDS with G as our base graph, π as
our update order, and F2 as our vertex state set, where our vertex functions all come
from our collection {fi}i∈I . Then this SDS has no fixed point.

In a sense, you can think of {fi}i∈I as some collection of functions that are “guaranteed”
to generate fixed-point-free SDSs, no matter what graph or update order you pick.

There are two very surprising facts about these collections:

1. Such collections exist. In particular, take the collections {nori}∞i=1 and {nandi}∞i=1:
these both3 satisfy the above property.

2. No other collections exist. In other words, any collection that satisfies the above
properties is either the all-nor-set or the all-nand set.

The first part of this claim — that the all-nor-set or the all-nand set have the property
claimed — we leave for the reader to verify on their own! It is not a hard thing to check,
and is good practice to do.

The second part of this claim — that these are the only possible such collections — we
prove here.

2We say that a function f(x1, . . . xn) is symmetric if the order in which we describe its inputs does not
change the output: i.e. if f(x1, . . . xn) = f(xπ(1), . . . xπ(n)), for any permutation π.

3In case you forgot: the functions nori take in i values from F2 and output 1 if they are all 0, and 0
otherwise. The functions nandi are similar; they take in i inputs from F2 and output 0 if they are all 1,
and 0 otherwise.

9

Proof. We proceed in two stages: we first prove that each individual function fi is either a
nor or a nand, and then proceed to show that our collection cannot contain both a nor and
a nand.

To see the first claim: take any fi from our collection, and assume without loss of
generality that fi : Fi2 → F. If i = 1, then we can verify our claim by checking cases:

• First, notice that f1(0) must be equal to 1, as otherwise the graph K1 has 0 as a fixed
point.

• Similarly, we must have f1(1) = 0, to avoid having 1 as a fixed point.

• This completely determines our function! In particular, we have shown that f1 =
nor1 = nand1. (Conveniently, we don’t even have to worry about which of nor or
nand this function is: in the one-input case, they are the same.)

For i = 2 we can proceed by cases in a similar fashion:

• Again, notice that f2(0, 0) must be equal to 1, as otherwise the graph K2 has (0, 0)
as a fixed point.

• Similarly, we must have f2(1, 1) = 0, to avoid having (1, 1) as a fixed point.

• Because our function is symmetric, we know that f2(0, 1) = f2(1, 0). So there are two
cases:

1. f2(0, 1) = f2(1, 0) = 0. In this case, we are nor2.

2. f2(0, 1) = f2(1, 0) = 1. In this case, we are nand2.

Again, we have proven our claim.
We now proceed to prove our claim for any i > 2. Again, notice that as before our

function must send the all-0 state to 1, and the all-1 state to 0.
We proceed by contradiction, and assume that fi is neither nori nor nandi; we will

seek to create a SDS using these functions that has a fixed point, which will contradict our
initial assumptions that any SDS we can create must be fixed-point free. In this case, we
must have a pair of system states ~x, ~y such that

• fi(~x) = 1, fi(~y = 0, and

• neither ~x nor ~y are identically 0 or identically 1.

Such a pair of system states must exist if our function is neither nori nor nandi (if this is
not clear, check this for yourself!) Let lx denote the number of 1’s in the vector ~x, and ly
denote the number of 1’s in the vector ~y.

We now proceed by cases, depending on whether f2(0, 1) = f2(1, 0) = 0 or f2(0, 1) =
f2(1, 0) = 1:

1. Suppose that f2(0, 1) = f2(1, 0) = 0. In this case, create the following graph:

• Take a copy of Klx .

10

• For each vertex v ∈ Klx , create i − lx new vertices, and connect all of those
vertices to v.

Now, consider the SDS on this graph where we assign fi to all of the vertices in the
Klx part, and f2 to all of the degree-1 vertices we attached to this complete graph. If
we look at the system state where we initialize each vertex in Klx to 1 and the rest
to 0, we can see that

• Each fi will be applied to a vector with lx-many 1’s, and therefore yield 1, because
fi(~x) = 1 and our functions are symmetric.

• Each f2 will be applied to a vector with one 1 and one 0, and therefore yield 0.

In other words: this state is a fixed point! This contradicts our assumption that any
SDS we could build would be fixed-point free, as desired.

2. Now, suppose instead that f2(0, 1) = f2(1, 0) = 1. In this case, create the following
graph:

• Take a copy of Ki−ly .

• For each vertex v ∈ Ki−ly , create ly new vertices, and connect all of those vertices
to v.

Now, consider the SDS on this graph where we assign fi to all of the vertices in the
Ki−ly part, and f2 to all of the degree-1 vertices we attached to this complete graph.
If we look at the system state where we initialize each vertex in Ki−ly to 0 and the
rest to 1, we can see that

• Each fi will be applied to a vector with ly-many 1’s, and therefore yield 0, because
fi(~y) = 0 and our functions are symmetric.

• Each f2 will be applied to a vector with one 1 and one 0, and therefore yield 1.

In other words: this state is also a fixed point! This again contradicts our assumption
that any SDS we could build would be fixed-point free.

This proves our first claim: that each individual function fi is either a nor or a nand.
To see that our collection cannot contain both a nor and a nand, we again proceed by
contradiction: assume that we have both a nori and nandj in our collection. Consider
the complete bipartite graph Ki−1,j−1, where we associate nori to all of the vertices in one
part and nandj to all of the vertices in the other part of our bipartite graph. Initialize
every vertex in the degree-i−1/nor part to 0, and initialize and every vertex in the degree-
j − 1/nand part to 1. Then, notice that

• each nori function will see 1’s in its neighbors and therefore remain in its current
state 0, while

• each nandi function will see 0’s in its neighbors and therefore remain in its current
state 1.

In other words: we have created a SDS with a fixed point! This gives us a contradiction,
and completes the last part of our proof, as desired.

11

3 Properties of Sequential Dynamical Systems: Invertibility

A second property that is often desirable in a SDS is the concept of invertibility. We
indirectly mentioned this earlier when defining the time series for a given initial state, but
formally define this concept here:

Definition. Consider a SDS on a graph G with n vertices, vertex states from some set K,
and system update map [FG, π]. We say that this SDS is invertible if its corresponding
system update map, thought of as a function Kn → Kn, is invertible; i.e. a bijection.
(Notice that because Kn is a finite set, it suffices to show that [FG, π] is either injective or
surjective to get that it is a bijection; this is a fairly elementary consequence of basic set
theory, and is one that we will use without further justification in our proofs.)

Given a specific SDS, how can we tell if it is invertible? We answer this in the following
observation:

Observation. Take any SDS on a graph G with n vertices, vertex states from some set
K, local functions {fv}v∈V (G), and system update map [FG, π] = Fvπ(1) ◦ . . . ◦ Fvπ(n) . This
system update map is invertible if and only if the following holds: for any vertex v and set
of states for the neighbors of v ~xn(v) ∈ Kn(v), the map

gv,~xn(v) : K → K, gv,~xn(v)(k) = fv(

the vector ~xn(v),
with k inserted in
v-th position︷ ︸︸ ︷

x1, . . . k, . . . xn(v))

is a bijection.

Proof. We first briefly explain what these maps gv,~xn(v) are: they are simply the functions
that we get by taking each fv and fixing all of their inputs except the one corresponding to
v itself. For example, suppose that we were working with the SDS on C3 where each vertex
is assigned the function nor3. Then, for example, we would have

fv1 = nor3(x3, x1, x2).

The map gv1,~xn(v) would then correspond to any way of fixing the values of v1’s neighbors
ahead of time, to make this just a function of vertex v1’s state: i.e.

gv1,(0,0)(x1) = nor3(0, x1, 0), gv1,(0,1)(x1) = nor3(0, x1, 1),

gv1,(1,0)(x1) = nor3(1, x1, 0), gv1,(1,1)(x1) = nor3(1, x1, 1).

With this stated, the proof is actually really easy: it’s just a matter of wrapping your
head around the notation. First, notice that [FG, π] is invertible if and only if each of the
functions Fvπ(1) , . . . ◦Fvπ(n) are invertible. (Again, this is a consequence of some elementary
set theory; prove this if you do not see why it is true!)

12

Now, notice that each Fvi is simply the local function defined by

Fvi(~x) = (x1, . . . xi−1, fvi(~xvi), xi+1, . . . xn) .

What does it mean for this function to be a bijection? Well: consider the functions gvi,~xn(vi)
.

If there is some set of values ~xn(vi) such that one of these maps fails to be injective, then
by definition there are two values k, k′ such that gvi,~xn(vi)

(k) = gv,~xn(vi)
(k′). Take ~xn(vi) and

extend it to a vector in Kn(vi)+1 by putting k or k′ in the vi-coordinate; call these two
vectors ~xvi , ~x

′
vi respectively.

By construction, we know that fv(~xvi) = fv(~x
′
vi). Therefore, if we extend these vectors

to a pair of system states ~x, ~x′ ∈ Kn, we actually have

Fvi(~x) = (x1, . . . xi−1, fvi(~xvi), xi+1, . . . xn) =
(
x1, . . . xi−1, fvi(~x

′
vi), xi+1, . . . xn

)
= Fvi(~x

′).

In other words, Fvi is not injective!
Therefore, we have shown that it is clearly necessary for the functions gvi,~xn(vi)

to be
bijections if the Fvi functions are bijections. The same logic shows that it is sufficient for
the gvi,~xn(vi)

-functions to be bijections; if we have any two vectors ~x, ~x′ such that

Fvi(~x) = (x1, . . . xi−1, fvi(~xvi), xi+1, . . . xn) =
(
x1, . . . xi−1, fvi(~x

′
vi), xi+1, . . . xn

)
= Fvi(~x

′),

then we know in particular that fvi(~xvi) = fvi(~x
′
vi), and moreover that all of the coor-

dinates x1, . . . xn 6= xvi are identical. Therefore, these two values are equal if and only
if gvi,~xn(vi)

(xvi) = gvi,~xn(vi)
(x′vi). If the functions gvi,~xn(vi)

are all bijections, this forces

xvi = x′vi , and therefore tells us that our Fvi functions are bijections!

This might initially look like a fairly weak observation: we’ve effectively just said that a
function is invertible if and only if it is made out of invertible things. Yet, this actually is a
fairly useful observation to have made: it lets us evaluate whether a large-scale phenomena
like [FG, π] is invertible based on only local information like how these gv1,~xn(v) maps work!

To illustrate the power of this observation, consider the following two examples:

Example. Take any graph G. Turn this into a SDS with vertex states from Z/kZ, where
all of the vertex functions are of the form

fv(x1, . . . xn) = (mod k)n(x1, . . . xn) = x1 + . . .+ xn mod k.

This SDS is invertible; to see why, simply apply the observation from above, and note that
each gv,~xn(v) has the form

gv,~xn(v)(xv) = xv + (x1 + . . . xn(v)) mod k = xv + c mod k,

for some constant c ∈ Z/kZ. In particular, this means that the maps gv,~xn(v) are all of the
form x 7→ x+ c mod k for various constants c, which are all bijections on Z/kZ.

Example. Consider the cellular automata rule f73 : F3
2 → F2, that takes in a triple

(xi−1, xi, xi+1) and outputs a new value for xi as defined by the table below:

(xi−1, xi, xi+1) 111 110 101 100 011 010 001 000

f73 0 1 0 0 1 0 0 1

13

No SDS that uses this vertex update function — say, for example, the SDS on Cn where
we use this function on all of the vertices of our cycle — can be invertible. To see why,
simply notice that f73(101) = f73(111) = 0, and therefore that the corresponding g-function
gv,(11) : F2 → F2, gv,(11) = f73(1, xv, 1) is not a bijection. Therefore, by our observation
above, the SDS that is built by using this function must also fail to be a bijection.

For a SDS with vertex states taken from F2, this gives us a fairly nice corollary:

Corollary. Take any SDS with vertex states from F2 and system update map [FG, π] =
Fvπ(1) ◦ . . . ◦ Fvπ(n) . If this system update map is invertible, then its inverse is just [FG, π

∗],
where π∗ is π in reverse order: i.e. if π = (v1, . . . vn), then π∗ = (vn, vn−1 . . . v1)

Proof. First, notice that the only two invertible functions from F2 to F2 are the identity
map and the map that switches 0 and 1; in either case, repeating either map twice yields
the identity.

Therefore, when we look at the composition

[FG, π] ◦ [FG, π∗] = (Fvπ(1) ◦ . . . ◦ Fvπ(n−1)
◦ Fvπ(n)) ◦ (Fvπ(n) ◦ Fvπ(n−1)

◦ . . . ◦ Fvπ(1))
= (Fvπ(1) ◦ . . . ◦ (Fvπ(n−1)

◦ (Fvπ(n) ◦ Fvπ(n)) ◦ Fvπ(n−1)
) ◦ . . . ◦ Fvπ(1))

we can see that each pair Fvπ(k) ◦ Fvπ(k) = F 2
vπ(k)

is just the map that sends (x1, . . . xn) to

(x1, . . . g
2
vπ(k),~xn(vπ(k))

(xvπ(k)), . . . xn). In particular, because g is an invertible map from F2

to F2, we know that g2 is the identity, and therefore that this composition is the identity
as well!

Repeatedly applying this observation above gives us that the entire composition [FG, π]◦
[FG, π∗] is the identity, as claimed.

Just like with fixed points, we can actually make some very strong claims about any
SDS whose vertex functions are symmetric and take values in F2:

Theorem. Suppose that we have an invertible SDS with vertex values from the set F2, in
which all of our local vertex functions fv are symmetric. Then each of our vertex functions
are either parityn or 1 + parityn, where these functions are defined as follows:

parityn(x1, . . . xn) = x1 + . . .+ xn mod 2,

1 + parityn(x1, . . . xn) = x1 + . . .+ xn + 1 mod 2.

Proof. Take any vertex function fv : Fi2 → F2, and look at fv(0, . . . 0). I claim that if this
function outputs 0 on this input, then it is parityi, and otherwise it is 1 + parityi.

To see why, simply induct on the number of 1’s in any input to fv. It is clear that for
all inputs with no 1’s, our function fv agrees with our claim that it is one of parityi or
1 + parityi.

Now, assume inductively that for all inputs with k or fewer 1’s, our function fv agrees
with one of parityi or 1 + parityi. Take any input ~x with k + 1 1’s in it. By rearranging,
insure that this input has a 1 in the v-th position; because our function is symmetric, we

14

do not lose any generality by assuming that our vector has this form. Consider the vector
~x′ formed by taking ~x and replacing its v-th coördinate with a 0; this is now a vector with
k 1’s in it.

By our earlier observation, we know that fv(~x) 6= fv(~x
′), as they agree at everywhere

but their v-th coördinate, and we switched the value in our v-th coördinate! Therefore,
when we increased the number of 1’s in an input by one, the output of our function flipped.
In particular, if our function gave us the parity of k on an input of k 1’s, it now gives us
the parity of k + 1 on an input of k + 1 1’s — in other words, it is still the parity function!
Similarly, if it used to be 1+ the parity function on inputs of size k, it is still that function
on inputs of size k + 1.

By induction and the observation that our function is symmetric, we have established
our claim for all possible inputs; i.e. each of our vertex functions are either parityi or
1 + parityi, as claimed.

15

	Examples of Sequential Dynamical Systems
	Properties of Sequential Dynamical Systems: Fixed Points
	Properties of Sequential Dynamical Systems: Invertibility

