
Math 137B Professor: Padraic Bartlett

Lecture 4: Toroidal Graphs

Week 6 UCSB 2014

(Relevant source material: Chapter 6 of Douglas West’s Introduction to Graph The-
ory; Section V.3 of Béla Bollobás’s Modern Graph Theory; Part IV of Alexander Soifer’s
Mathematical Coloring Book; various other sources.)

This set of notes starts our third of the four different branches of graph theory we are
studying in this class: topological graph theory! In this first set of notes, we examine
toroidal graphs, i.e. the torus-version of planar graphs, and create a coloring theorem for
such graphs that is analogous to the four-color theorem that we explored last quarter.

We start by reviewing our previous work on planar graphs:

1 Planar Graphs

Definition. Last quarter, we defined a planar graph as a graph G that we can draw on
R2 in the following fashion:

• Each vertex of G is represented by a point in R2.

• Each edge in G is represented by a continuous path in R2 connecting the points
corresponding to its vertices.

• These paths do not intersect each other, except for the trivial situation where two
paths share a common endpoint.

We call such a drawing a planar embedding of G in R2.

Many graphs are planar:

Some graphs are planar even though they may not look so at a first glance:

Sometimes, it will help to think of planarity in the following way:

Definition. We call a graph G planar if we can draw it on the sphere S2 in the following
fashion:
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• Each vertex of G is represented by a point on the sphere.

• Each edge in G is represented by a continuous path drawn on the sphere connecting
the points corresponding to its vertices.

• These paths do not intersect each other, except for the trivial situation where two
paths share a common endpoint.

We call such a drawing a planar embedding of G on the sphere.

It is not hard to see that this definition is equivalent to our earlier definition of planarity.
Simply use the stereographic projection map (drawn below) to translate any graph on the
plane to a graph on the sphere:

By drawing lines from the “north pole” (0,0,1) through points either in the xy-plane or on the surface of

the sphere, we can translate graphs drawn on the sphere (in red) to graphs drawn in the plane (in yellow.)

Definition. For any planar graph G, we can define a face of G to be a connected region
of R whose boundary is given by the edges of G.

For example, the following graph has four faces, as labeled:

f1
f2 f4

f3

Notice that we always have the “outside” face in these drawings, which can be easy to
forget about when drawing our graphs on the plane. This is one reason why I like to think
about these graphs as drawn on the sphere; in this setting, there is no “outside” face, as all
of the faces are equally natural to work with.
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f1 f2 f3

f4

f2

f1 f3

f4

This observation has a nice accompanying lemma:

Lemma. Take any planar graph G, and any face F of G. Then G can be drawn on the
plane in such a way that F is the outside face of G.

Proof. Take a planar embedding of G on the unit sphere. Rotate this “drawn-upon” sphere
so that the face F contains the north pole (0, 0, 1) of the sphere. Now, perform stereographic
projection to create a planar embedding of G in R2. By construction, the face F is now the
outside face, which proves our claim.

It bears noting that not all graphs are planar:

Proposition. The graphs K5 and K3,3 are not planar.

Proof. Draw a 5-cycle on the sphere. If the edges of this 5-cycle do not intersect each other,
then the resulting pentagon partitions the sphere into two parts, each part of which is
bounded by this pentagon. Take either one of these parts; notice that within that part, we
can draw at most two nonintersecting edges connecting nonadjacent vertices in that part.
Consequently, it is impossible to draw the additional 5 edges required to create K5 without
using overlapping edges. Therefore it is impossible to find a planar embedding of K5 on the
sphere, as claimed.

K3,3 is identical. First, notice that K3,3 can be drawn as a hexagon where opposite
points are connected by edges:

a b c

d e f

a

d
b

f

c
e

From here, draw any 6-cycle on the sphere in such a way that its edges do not intersect.
Again, this partitions the sphere into two parts, each bounded by a hexagon; within either
part, we can draw at most one edge connecting opposite points on the hexagon without
creating edges that intersect. Therefore, it is impossible to draw the three total edges
needed to create K3,3. So K3,3 is nonplanar, as claimed.
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We studied properties about planar graphs last quarter! Two notable results we dis-
cussed were the following:

1. Euler characteristic: If V denotes the number of vertices, E the number of edges,
and F the number of faces in any planar graph, then V −E +F is always equal to 2.

2. The four-color theorem: The chromatic number of any planar graph is at most 4.

Given these results, a natural question to ask is the following: how does this generalize
when we work on other shapes? I.e. suppose we draw graphs without intersecting edges on
things other than spheres; do we get a corresponding notion of the Euler characteristic? Of
the four-color theorem?

These two questions are the focus of this talk! We start by introducing the torus, the
surface we focus on in today’s lecture:

2 Toroidal Graphs

Definition. A torus, informally, is the doughnut-shaped surface that you get by taking a
square made out of some arbitrarily-stretchy material and gluing together opposite sides.

More formally, you can think of the torus as the collection of all points (x, y) ∈ R2 under
the equivalence relation (x, y) ∼ (a, b) whenever x − a, y − b ∈ Z. In other words, this is
simply taking the square [0, 1]× [0, 1], “gluing” the edge {0}× [0, 1] to the edge {1}× [0, 1],
and finally gluing the edge [0, 1]× {0} to th edge [0, 1]× {1}.

We will call the torus T 2 at times, much like how we sometimes call the sphere S2.

Given a torus, a natural question to ask (given our discussion above) is what kinds of
graphs we can draw on it without intersecting edges! It is relatively easy to see that we can
draw any planar graph G on a torus, by simply shrinking G down until it fits within a 1×1
square and then using our definition of what a torus is.

More interestingly, however, is the observation that there are several graphs that we
cannot draw in the plane that can be drawn on a torus. We draw K5,K3,3, and K7 below
to give three such examples of such graphs:

K5 K3,3 K7

a

a a

a

b
c

d

g
f

e
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Given such an embedding, we might hope for a notion of “face” to match the one we had
for planar graphs. However, we need to be careful about what we mean here. For example,
the graph below partitions our torus into three pieces:

f1
f2

f3

However, not all of those pieces are the “same,” topologically speaking. In particular, the
“outer piece” is materially different than the two inner ones: for example, we can draw a
loop on the outer face that no matter how we move it about, can never be contracted to a
point. This is not something we can do on the inner pieces; any loop on them can always
be contracted to a point!

f3

,
f2

The blue loop in f3 cannot be shrunk to a point, unlike any blue loop in f2.

Formally speaking, we distinguish these cases via the following definition:

Definition. Take a surface S with a graph G drawn on S, and a region R of S bounded
by the edges of S. We say that this region forms a face of G if there is a continuous
bijection with continuous inverse from this map to the unit square (0, 1) × (0, 1) in R2, or
equivalently to any connected open subset of R2. For shorthand, we say that this region is
homeomorphic to an open subset of R2.

We will never use this formal definition in this class, as this is not a topology class. (Related:
take topology classes!) Instead, we will typically work with examples where the distinction
is clear; faces will be regions that look like pieces of R2 like triangles or n-gons. But it is
worth noting that there is a lot of formalism that can buttress the graph theory we are
doing here.

We use this definition to finally describe the torus-version of planar, which we call
toroidal:
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Definition. We call a graph toroidal if we can draw it on the torus T 2 in the following
fashion:

• Each vertex of G is represented by a point on the torus.

• Each edge in G is represented by a continuous path drawn on the torus connecting
the points corresponding to its vertices.

• These paths do not intersect each other, except for the trivial situation where two
paths share a common endpoint.

• Moreover, take any region in the torus whose boundary is given by a collection of
paths corresponding to edges in G. This region should be a face, as defined above;
i.e. it should look like a connected open subset of R2.

Just like how we established a notion of Euler characteristic for planar graphs, and a
four-color theorem for planar graphs, we can do the same thing for toroidal graphs:

Theorem. (The Euler characteristic of the torus.) Suppose that G is a toroidal graph, and
that G has V vertices, E edges and F faces. Then V − E + F = 0.

Proof. We do our proof by reducing any graph G to a simpler multigraph (i.e. a graph
where we allow loops and multiple edges between vertices,) in such a way that does not
change the quantity V −E + F . First, notice that if our graph has more than one face, we
can perform the following operation to decrease the number of faces by 1, without changing
V − E + F :

f

This is because (if F has n vertices and edges on its boundary) we have decreased the total
number of edges by n, the total number of faces by 1, and the total number of vertices by
n− 1 (we collapsed the n vertices of the face to one single vertex.) Moreover this operation
does not break the toroidal nature of our graph, as we can still draw our edges without
intersections and our faces are still faces.

Perform the above operation until we cannot do so any more. Then our graph consists
of exactly one face.

Now, suppose that we have any leaf-nodes in our graph. We can delete these nodes and
their attached edges without changing V −E+F , as each deletion lowers both V and E by
1. Finally, notice that if we have any edge in our graph that is not a loop, we can collapse
this edge to a point without changing V −E + F , as we will have decreased both V and E
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by one. This gives us a graph that consists only of loops all centered at one vertex, with
one face.

Take any loop in our graph. Notice that because our graph has only one face, cutting
along this loop does not separate our torus into two parts (as that would imply that we had
two faces.)

Up to a very plausible-sounding but heavy bit of topological machinery, then, we can
draw this loop as some path that wraps around our torus a number of times. If we cut
along that loop, we will get something that (up to an even number of twists) looks like a
cylinder:

Now, take any other edge in our graph. (There must be some other edge, because a
cylinder does not “look like” a region of R2: i.e. we can draw a circle around the cylinder
that cannot be drawn to a point, which illustrates that this shape is distinct, topologically
speaking, from a disk in R2.) Again, because our torus only has one face, cutting along this
edge does not break our cylinder into two parts. As well, because our graph is toroidal,
it does not intersect the path we cut along to get this cylinder; so we can draw it on the
cylinder without having to “cross over” the parts we cut along.

Again, up to a bit of topology, we can draw this edge as some path that wraps around
our cylinder a number of times:

Cutting along this edge gives us a face! Therefore, we have no more loops that we can
draw, and thus we know that our graph is actually just a pair of loops linked at a single
common point. This gives us 2 edges, 1 vertex (because they are linked at a common point)
and one face, which in particular means that V − E + F = 0 for this graph. Because the
operations that we have performed in this proof did not change V −E+F , we can conclude
that this property holds for our original toroidal graph as well.

Theorem. (The seven-color theorem for the torus.) Suppose that G is a toroidal graph.
Then χ(G) ≤ 7.

Proof. Take any toroidal graph. Notice that in this graph,
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• 2E ≥ 3F . You can derive this identity by taking the sum over every face of the
number of edges in each face. There are at least 3 edges in a face in any graph, so
this sum is bounded below by 3F ; on the other hand, because each edge shows up in
exactly two faces, this sum is precisely 2E.

• 2E ≥ δ(G) · V, where δ(G) is the smallest degree of any vertex in our graph. You
can derive this identity in a similar way to the above, by summing the degree of each
vertex over all of the vertices; on one hand this sum is clearly greater than δ(G)V by
the definition of δ(G), and on the other it is equal to 2E by the vertex-sum formula.

Consequently, if we apply the Euler characteristic, we get

0 = V − E + F ≥ 2

δ(G)
E − E +

2

3
E.

This tells us that δ(G) ≤ 6 for any toroidal graph G!
From here, it is easy to prove that χ(G) ≤ 7 for any toroidal graph. Proceed by

contradiction; assume that there is a toroidal graph that needs at least eight colors to be
properly colored, and pick G to be a minimal example of such a graph. Let v be the vertex
in G with deg(v) ≤ 6 that we have proven must exist, and look at the graph G \ {v};
by assumption, because G was minimal, G \ {v} is 7-colorable. 7-color this graph, and
add v back in. v has at most 6 neighbors, so there is some color currently not used on
its neighbors; assign v this color. This creates a 7-coloring of G, which contradicts our
assumption; therefore no such graph can exist. In other words, χ(G) ≤ 7 for any toroidal
graph G, as claimed!

Notice that 7 is the is the best bound we can hope for; as we proved earlier in these
notes, K7 is a toroidal graph! The ease of this proof contrasts dramatically with the four-
color theorem, whose only known proofs require computer-aided search and are extremely
ponderous. (Even to create a proof that didn’t work took us a day and some interesting
switching arguments using Kempe chains!) Torii: they’re pretty cool!
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