
Math 137B Professor: Padraic Bartlett

Lecture 1: Electrical Networks and Random Walks

Week 1 UCSB 2014

(Relevant source material: Doyle and Snell’s “Random walks and electrical networks,”
which is available online here! Also, sections of Bollobas’s text on Modern Graph Theory,
various articles I’ve read, and probably other random things.)

Consider the following problem:

Problem. (The Drunkard’s Walk.) Assume, for a moment, that we are modeling a drunk-
ard’s very simplified map of the universe:

H x y B

There are in this world four possible locations: H, the drunkard’s home, B, an all-devouring
black hole that absorbs everything that accidentally wanders into it, and two intermediate
locations x and y. A drunkard, left to its own devices, will randomly wander between these
locations. Specifically: if it is at some vertex that is neither H nor B at time t, at time t+1
it will choose via coinflip one of the neighboring vertices to its current location and wander
there. If the drunkard ever makes it home (i.e. wanders to H,) it is safe and goes merrily
to sleep. If it wanders to B, it is sucked into the black hole and never will be seen again.

Suppose the drunkard starts at x. What are the drunkard’s chances of making it home?
How can we model these kinds of behaviors?

1 Random Walks

For a model as simple as this one, it’s remarkably simple to determine what happens!
Specifically, let’s consider the drunkard’s chances of making it home starting from any
vertex v, not just x: for notational convenience, denote this probability as p(v). What do
we know about these values?

• p(H) = 1: if the drunkard starts at home, it’s happy and safe!

• p(B) = 0: if we’ve accidentally left the drunkard inside of the black hole, we’re not
going to see it anytime soon.

• For v 6= H,B, we have p(x) = 1
2p(H) + 1

2p(y), and p(y) = 1
2p(x) + 1

2p(B). This is
because a drunkard at any vertex that’s neither home or the black hole will choose
between the two neighbors available to it with the same probability (1/2), and then
travel to that respective vertex via that edge. So, its chances of survival are 1

2 · its
chances at the vertex to its left, plus 1

2 · its chances at the vertex to its right.

This gives us the following four linear equations in four unknowns:
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• p(B) = 0,

• p(x) = p(H)+p(y)
2 ,

• p(H) = 1,

• p(y) = p(x)+p(B)
2 ,

Solving this system tells you that p(2) = 1
3 , p(3) = 2

3 , and thus that our specific drunkard
at vertex x has a 2/3rds chance of making it home.

Let’s consider a trickier version of the above problem. Suppose that instead of just
a four-vertex path, we have some graph G that we want to model a drunkard’s walk on,
with selected vertices H and B that denote the drunkard’s home / a point of no return,
respectively; this lets us model things like city blocks. Also, let’s attach weights wxy to every
edge in our graph, that denote the likelihood that our drunkard will pick that edge over the
other edges available to it; this lets us distinguish between things like clean, well-light main
streets and sketchy alleyways.

Under this model, if we still let p(x) denote the probability that from x we make it to
H before reaching B, we have the following system:

• p(H) = 1.

• p(B) = 0.

• For x 6= H,B, we have

p(x) =
∑

y∈(neighbors of x)

p(y) · wxy

wx
,

where wx is the sum of all of the weights of edges leaving x:

wx =
∑

y∈(neighbors of x)

wxy

This is because a drunkard at any vertex that’s neither home or the black hole will
choose between the neighbors available to it with probabilities weighted by the values
wxy: i.e. the probability that we travel to a neighbor y is just wxy/wx, the weight of
the edge from x to y divided by the sum of the weights of all of the possible edges
leaving x. Therefore, our probability p(x) of making it to home before the black hole
is just the weighted average over all of x’s neighbors of the same event!

To illustrate this idea, we calculate a second example:

Problem. (The Drunkard’s Walk.) Consider the following second map for a drunkard’s
walk:

H

a b

B

c d

2

2

1

2

2

1

1
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There are in this world six possible locations: H, the drunkard’s home, B, a black hole, and
four intermediate locations a, b, c, d, with weighted links between them as labeled. Suppose
that a drunkard starts off at one of these four locations. How likely are they to make it to
the vertex H before the vertex B?

As noted above, we can turn this into a system of six linear equations in six unknowns:

• p(B) = 0,

• p(a) = 1
2p(H) + 1

2p(b),

• p(c) = 1
4p(H) + 1

4p(a) + 1
2p(d),

• p(H) = 1,

• p(b) = 1
2p(a) + 1

4p(c) + 1
4p(B),

• p(d) = 1
2p(c) + 1

2p(B).

Again, we can just solve these equations by your favorite method of dealing with systems
of linear equations, to get

p(a) =
12

19
, p(b) =

5

19
, p(c) =

8

19
, p(d) =

4

19
.

Excellent! We have a general method for solving a problem. Let’s put that aside for a
second and consider a second problem that might seem unrelated at first:

2 Electrical Networks

We’re going to talk about electrical circuits and networks here for a bit! If you’ve never ran
into the concepts of voltage, current, conductance, or resistance before, that’s OK. For our
purposes, define these concepts as follows:

1. Voltage is just some function v : V (G) → R+ that assigns a positive number v(x) to
each vertex x. In any circuit, we will have some vertex that is grounded; this vertex
has v(ground) = 0. Similarly, we will declare that some source vertex has a potential
difference of 1v from ground assigned to it: this vertex has v(source) = 1.

2. Current is just another function i : E(G)+ → R that assigns a number to each
“oriented edge” (x, y) ∈ E(G)+. We will usually denote the resistance of an edge as
ixy. We ask that ixy = −iyx, which is why we have the current pay attention to the
orientation of edges: we want the flow of current in one direction on an edge to be
−1· the flow of current in the opposite direction.

3. Resistance is a function E(G) → R+ that assigns a positive number (measured in
ohms, Ω) to each unoriented edge {x, y} ∈ E(G). We usually denote the resistance of
an edge as Rxy.

We ask that these functions preserve the following two properties:

• (Ohm’s law:) The current across an edge {x, y} in the direction (x, y), ixy, satisfies

ixy =
v(x)− v(y)

Rxy
,

where v(x), v(y) are the voltages at x, y and Rxy is the resistance of the edge {x, y}.
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• (Kirchoff’s law:) The sum of the currents into and out of any vertex other than the
grounded vertex or the “source” vertex is zero: i.e. for any vertex neither grounded
nor hooked up to power, we have ∑

y∈N(x)

ixy = 0.

For convenience’s sake, we will also define the conductance of an edge {x, y} as the recip-
rocal of its resistance: i.e. Cxy = 1/Rxy, and define the conductance of a vertex x as the
sum of the conductances of the edges leaving it: i.e. Cx =

∑
y∈N(x) Cxy.

With these definitions made, the following problem is a fairly natural one to consider.

Problem. Suppose that we have an electrical circuit: i.e. a graph G with the following
structure:

• The values Rxy have been defined for every edge.

• Some vertex G has been declared to be grounded, while another vertex S has been
declared to be a “source” with a potential difference of 1v from ground.

Can we find v(x) for every vertex in our graph?

We start by considering basically the first graph we studied in this lecture, P4:

1v

S x y G

(ground)
1Ω 1Ω 1Ω

Specifically: we have taken the graph P4 we studied in our first example of random walks,
and turned it into a circuit as follows:

1. We replaced all of P4’s edges with resistors of unit resistance 1.

2. We grounded the vertex G, and created a potential difference of 1v across the vertices
G and S.

The decorations on the graph above denote this transformation: i.e. attaching a vertex to
denotes that it is the ground vertex, tells us that the vertex on the other side of this

symbol from ground is a source vertex with a potential of some number of volts defined on
it, tells us that an edge is a resistor with the labeled resistance, etc.

In this setup, what happens? Well: we have that v(G) = 0, v(S) = 1, and for any vertex
v not G or S, ∑

y∈N(v)

ivy = 0;
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i.e. for vertex x, we have

0 =
∑

y∈N(x)

ix,y = ixS + ixy =
v(x)− v(S)

RxS
+

v(x)− v(y)

Rxy

= v(x)− v(S) + v(x)− v(y),

which implies that v(x) = v(S)+v(y)
2 ; similarly, we can derive that v(y) = v(x)+v(G)

2 . In other
words, to find the voltages at the vertices x, y we’re solving the same equations we did for
our drunkard’s walk earlier: i.e. v(x) is 2/3, the probability that a drunkard walking on
our graph starting from x will make it to vertex S before vertex G!

3 Electrons Are Drunks

Surprisingly, this property above – that our random walk and electrical network were, in
some sense, the “same” – holds for all graphs! In the following lemmas, we make this idea
concrete:

Lemma. Suppose that we have a connected graph G with edges weighted by some labeling
wxy. Define a drunkard’s walk starting at a vertex x in our graph as the following process:

• Initially, the drunkard starts at x.

• Every minute, if a drunkard is at some vertex z, it randomly chooses one of the
elements y ∈ N(z) with probability given by the weights on its edges– i.e. each
neighbor has probability wzy/wz of being picked – and goes to that vertex.

Let a, b be a pair of distinguished vertices in our graph, and p(x) be the probability that a
drunkard starting at the vertex x will make it to vertex b before vertex a.

Then p(x) = v(x), if we turn our graph G into a electrical network with a connected to
ground, a unit of electrical potential sent across a and b, and replace every edge {x, y} of
G with a resistor with conductance wxy.

Proof. This is pretty much identical to what we just did. Specifically: we know from Ohm’s
law that

ixy =
v(x)− v(y)

Rxy
;

therefore, if we plug Ohm’s law into Kirchoff’s law, we have that whenever x 6= a, b, we
have
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∑
y∈N(x)

v(x)− v(y)

Rxy
= v(x) ·

 ∑
y∈N(x)

1

Rxy

− ∑
y∈N(x)

v(y)

Rxy

⇒ v(x) ·

 ∑
y∈N(x)

1

Rxy

 =
∑

y∈N(x)

v(y)

Rxy

⇒ v(x)Cx =
∑

y∈N(x)

Cxyv(y)

⇒ v(x) =
∑

y∈N(x)

Cxy

Cx
v(y).

But what is
Cxy

Cx
? It’s the probability that a drunkard starting at x chooses to travel to

the vertex y, if we’re picking neighbors of x with probabilities given by the Cxy’s! In this
specific case, where all of our resistances are 1, this is just the chance that a drunkard at
vertex x will go to y in our random walk.

But this is the exact same equation we’re asking p(x) to satisfy: i.e. we want

p(x) =
∑

y∈N(x)

(chance drunkard goes from x to y) · p(y) =
∑

y∈N(x)

wxy

wx
· p(y).

The only other restrictions we have on our voltage or random walk is that v(a) = p(a) =
0, v(b) = p(b) = 1: in other words, the equations that we’re asking our voltage function to
satisfy are the same that we’re asking our probability function to satisfy!

We have just shown that p(x) and v(x) are both solutions to the same sets of linear
equations. To conclude that they are equal, then, we just have to show that there is a
unique solution to these equations!

We do this by first making the following two observations:

Observation. Take any system of linear equations of the form obtained from these random
walks on a connected graph1; i.e. a collection of equations of the form

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

along with some boundary conditions p(bi) = ci. (In this sense, the “boundary” points
are the values that we’re given at the start of our system, while the rest of the points
are the “interior” points whose values are determined by these weighted averages of their
neighbors.)

Then the maximum and minimum values of p(x) must occur on these boundary points.

1Finding a solution to this kind of a system is the process of solving a Dirichlet problem, if you want
a formal name for reference in your reading.
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Proof. This is a fairly easy proof. Suppose instead that x is a point in the interior of our
graph, and that p attains its maximum at x. If we apply this observation to the equation

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

we get

p(x) =
∑

y∈N(x)

wxy

wx
· p(y) ≤

∑
y∈N(x)

wxy

wx
· p(x) = p(x).

The equality of the far-left- and far-right-hand-sides forces the intermediate terms to be
equal: i.e. we must have p(y) = p(x), for every neighbor of x! Repeated applications of this
argument will eventually give us that every vertex connected to x — i.e. every vertex in
our graph, because our graph is connected — is equal to p(x). In particular, this means
that our boundary points have values equal to p(x) as well.

An identical argument will show that having an interior point correspond to a minimum
of p(x) will force all of our vertices to be equal to that minimum as well.

Observation. Again, take any system of linear equations of the form obtained from these
random walks on a connected graph; i.e. a collection of interior equations of the form

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

along with some boundary conditions p(bi) = ci.
Suppose that p(x), q(x) are a pair of solutions to these equations. Then the mapping

r(x) = p(x) − q(x) is a solution to the same set of interior equations, where we replace all
of the boundary conditions with the conditions r(bi) = 0.

Proof. This is an even easier proof! Simply notice that if

p(x) =
∑

y∈N(x)

wxy

wx
· p(y), q(x) =

∑
y∈N(x)

wxy

wx
· q(y),

we have

r(x) = p(x)− q(x) =
∑

y∈N(x)

wxy

wx
· (p(y)− q(y)) =

∑
y∈N(x)

wxy

wx
· r(y).

Also, if p(bi) = ci, q(bi) = ci, then we have r(bi) = ci − ci = 0.

Given these two observations, we get the following corollary for free:

Corollary. If there is a solution to a system of linear equations of the form obtained from
these random walks on a connected graph, it is unique.

Proof. Suppose we have two solutions p(x), q(x) to such a system of linear equations. By
our second observation, their difference p(x) − q(x) is a solution to a system of linear
equations where all of the boundary values are 0. By our first observation, the maximum
and minimum of this p(x) − q(x) is attained on the boundary. But this means that the
maximum and minimum of p(x)− q(x) is 0: i.e. that p(x) = q(x)!

7



So, this tells us that a solution is unique if it exists. To finish our proof, we just need
to simply note that a solution can exist! This is also not too hard, if we use a bit of linear
algebra.

Take a system of linear equations of the form obtained from these random walks on a
connected graph, where the boundary values are 0: i.e. a collection of interior equations of
the form

p(x) =
∑

y∈N(x)

wxy

wx
· p(y),

along with some boundary conditions p(bi) = 0. By plugging in these boundary values into
our interior equations, we can get a collection of n equations in n unknowns p(x1), . . . p(xn)
of the form

p(xi)−
∑

y∈N(xi)

wxiy

wxi

· p(y) = 0.

In the standard fashion, turn these equations into a n×n matrix A by using the coefficients
of these n equations as the entries in A’s rows. Then a solution p(xi) for our set of equations
corresponds precisely to a vector ~p such that A~p = ~0.

On one hand, we know that a solution exists: simply set ~p = 0. On the other hand, we
know that any solution to our system is unique, as proven before! Therefore the only vector
such that A~p = ~0 is the all-zeroes vector: in other words, A is nonsingular! Therefore it has
an inverse, A−1.

Now, suppose that we were considering any boundary conditions p(bi) = ci. This would
correspond to a collection of equations of the form

p(xi)−
∑

y∈N(xi)

wxiy

wxi

· p(y) = di,

for coefficients di given by

di =
∑

boundary components bj

cj ·
wxibj

wxi

(where we assume wxibj = 0 if no edge connects xi to bj .)
Solutions to this system of equations correspond to vectors ~p that are solutions to the

equation A~p = ~d. Because A is invertible, such solutions exist! In particular, they are given
by ~p = A−1~d. This proves that solutions exist and are unique, which was our claim!

We now have an excellent interpretation of voltage in terms of our random walk. This
might lead us to wonder if other properties, like current, also correspond nicely to properties
about random walks! To establish this, we first prove the following lemma:

Lemma 1. Take a weighted graph with two distinguished vertices A,B on which we are
trying to model a random walk: on this graph, a walker starts at A, and at each time step
randomly (using our edge weighting) pick a neighbor of the vertex that it is currently at and
wanders to that vertex. If it ever reaches B it stops; otherwise, it continues (unlike in our
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previous interpretation, where the walker stopped if it arrived at some other home vertex H
as well.) Let u(x) denote the average number of times that a walker will wander through
the vertex x before reaching B in this model.

Consider the corresponding circuit to this weighted graph, where all edges have conduc-
tance corresponding to our weights, B is grounded, and a potential of u(A)

CA
volts is established

between B and A. Then we have the following relation between v(x), the voltage, and u(x):

v(x) =
u(x)

Cx
.

Proof. Trivially, we have v(B) = 0 = u(B)/CB, because B is grounded and no vertex can
visit B before, um, visiting B. As well, we’ve specifically asked that v(A) = u(A)/CA in
our problem’s statement.

Finally: for any vertex x 6= A,B, we have

u(x) =
∑

y∈N(x)

(chance of going from y to x) · u(y);

i.e. the number of times we’ll go through x is just the sum of the number of times we’ll
visit any of the neighbors of x, weighted by the chances of subsequently going from y to x.

From our above discussion, we know that the chance of walking from y to x is
Cxy

Cy
. If

we use this observation and do a little symbolic manipulation, we can get the following:

u(x) =
∑

y∈N(x)

Cxy

Cy
· u(y)

=
∑

y∈N(x)

Cxy · Cx

Cy · Cx
· u(y)

⇒ u(x)

Cx
=

∑
y∈N(x)

Cxy

Cx
· u(y)

Cy

So: we’ve seen these linear equations before! In particular, if we replace the u(z)
Cz

’s with
v(z)’s, these are precisely the linear equations that we asked the voltage function v(x) to
satisfy. We proved that these equations have a unique solution; therefore, this forces v(x)

and u(x)
Cx

to be equal, as claimed.

How does this relate to current? Well: in a super-simplistic sense, we can model the
current flowing through an oriented edge (x, y) as the “flow” of electrons from x to y: i.e.
if we have electrons randomly bumbling about on our graph starting at b and wandering
around until they get to a, we might hope that ixy is the average number of electrons that
go from x to y, minus the number that go “backwards” along this edge from y to x.

We prove this here:

Lemma 2. Let G be a graph as above, with potential difference between the ground vertex
B and the source vertex A still set to u(A)/CA. Then we have the following relation:

ixy = u(x)
Cxy

Cx
− u(y)

Cxy

Cy
.
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In other words, the current between x and y is just the average number of times a random
walker “uses” the edge (x, y) to go from x to y, minus the average number of times a random
walker walks backwards on said edge from y to x!

Proof. We simply calculate, using our identities:

ixy = (v(x)− v(y)) · Cxy =

(
u(x)

Cx
− u(y)

Cy

)
Cxy = u(x)

Cxy

Cx
− u(y)

Cxy

Cy
.

Electricity! Random walks! Apparently, mostly the same. So: why mention this in
a graph theory class, other than the basic underlying structure? Consider the following
puzzle posed by Polya (amongst others):

Question 3. Suppose that you have placed a random walker placed at the origin of a d-
dimensional integer lattice Zd, and let it wander. Given enough time, will the random
walker return to the origin? Or is there a nonzero chance that the random walker will
wander forever without returning to the origin?

4 Circuits as Black Boxes

To attack this kind of question, it might help to introduce some new ideas. Specifically,
suppose that we have a circuit with two points A,G, where we’ve grounded G and have
a voltage of 1v established at A. If you have done this, then there is some amount of
current flowing out of A. Denote this quantity as iA, and note that iA is given by the sum∑

x∈N(A) iAx. Note that by Kirchoff’s laws, the quantity of current that flows out of A is the
same as the quantity of current that flows into G, because the sum of the currents through
every vertex not A, B is equal to 0, and therefore whatever flows out of A must eventually
flow into G.

Now, imagine simply covering up all of the connections and other bits between A and G
with some sort of big black box. If we do this, then our circuit just looks like the following:

A G

(ground)

???

In this sense, we can simply “abstract” the rest of our circuit as some particularly large
and bulky resistor, with effective resistance (which we denote Reff) given by Ohm’s law:

V (A)− V (G)

iA
= Reff
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Similarly, we can define Ceff = 1/Reff.
Earlier, we noted that the current across an edge (x, y) was proportional to the expected

number of paths from x to y minus the expected number of paths from y to x, up to scaling
by the voltage we’ve established between the ground and the source. Does this idea still
hold here? In other words: is there some connection between ia and the total number of
paths from A to G? Well: calculating, we have

iA =
∑

y∈N(A)

(v(A)− v(y)) · CAy

=
∑

y∈N(A)

(v(A)− v(y)) ·
CAy

CA
· CA

= CA

v(A)
∑

y∈N(A)

CAy

CA
−

∑
y∈N(A)

v(y)
CAy

CA


= CA

v(A)−
∑

y∈N(A)

v(y)
CAy

CA



What is this quantity? Well:

• We know that v(A) is 1, by assumption.

• We also know that
CAy

CA
denotes the probability that a random walker will travel from

the vertex A to the vertex y.

• Finally, we know that v(y) = p(y), the probability that a walk starting at y will make
it to A before G.

So: if we’re starting at A and leaving to any of A’s neighbors (which we pick with probability
CAy

CA
), the chances of returning to A before making it to G is just v(y). Therefore, the sum

on the right inside of our parentheses is precisely the chances of starting at A and returning
there before making it to G; consequently, 1 minus this sum is precisely the likelihood that
we start at A and do not return there before wandering to G. Call this event, where we
start at A and wander to G without returning to A, an “escape” event, and denote the
probability of such an event happening pesc.

If we plug this interpretation into our formula above, we get the following fantastically
useful relation:

iA
CA

= pesc.

5 Resistance: Surprisingly Not Futile

This, basically, is almost the last tool we need to tackle Polya’s problem on Zd. This is
because we (for values of “we” that includes electrical engineers) know lots of techniques for
finding effective resistances! In particular, suppose we have a series of resistors connected
“in parallel,” like in the picture below:
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Then the effective resistance of the pictured circuit is the reciprocal of the sum of the
reciprocals of the resistors:

1

Reff
=

n∑
i=1

1

Ri
.

Alternately, you can think of this claim as the statement that the “effective conductance”
of the circuit is the sum of the conductances of the circuit.

Similarly, suppose we have a circuit made of resistors linked in series, as depicted below:

Then the effective resistance of the pictured circuit is the sum of the resistors:

Reff =

n∑
i=1

Ri.

It bears noting that you can deduce these properties from the two rules we’ve stated for
electrical networks, Ohm’s law and Kirchoff’s law; the first property just says that the
conductances sum when we have resistors in parallel, and the second says that resistances
sum when we have resistors in series. We omit a formal proof here, but it’s not very difficult
(indeed, it’s on your HW!)

The other property of electrical networks we’re going to use throughout our proofs is
Rayleigh’s Monotonicity Theorem, which we state here:

Theorem 4. If any of the individual resistances in a circuit increase, then the overall
effective resistance of the circuit can only increase or stay constant; conversely, if any of
the individual resistances in a circuit decrease, the overall effective resistance of the circuit
can only decrease or stay constant.

In specific, cutting wires (setting certain resistances to infinity) only increases the effec-
tive resistance, while fusing vertices together (setting certain resistances to 0) only decreases
the effective resistance.

We also omit the proof of the statement here (again, it’s on your HW!)
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6 Random Walks in Zd

Given these tools, we are now equipped to tackle our question! Let’s turn to Z1, as a quick
warm-up. Our question, then, is whether a random walker starting at some point on the
integer line (say the origin) will always return to the origin, or whether there’s a nonzero
chance that it wanders off forever.

All of our tools, as currently formulated, only apply to finite graphs. So, to study an
infinite graph like Zd, we need to do the following:

• Let x be whichever node we’re designating as the origin, and G(r) be the graph formed
by taking all of the vertices connected to x by paths of length at most r.

• Turn this into a electrical network problem by soldering all of the vertices that are
distance r from x together into one big ball (i.e. identifying all of these vertices to-
gether,) grounding them, putting one unit of voltage at x, and making all of the edges
resistors with resistance 1. Then, via our earlier discussions, we can talk about the
probability that a drunkard starting at x will make it to this point at distance r before

returning to x. Denote this quantity as p
(r)
esc.

• Let pesc be the limit limr→∞ p
(r)
esc. If this is nonzero, then there is some nonzero chance

that our piffle will wander forever; if this is zero, then our piffle must eventually return
to the origin.

• Notice that if it must eventually return to the origin, then it must eventually make it
to any vertex w in G! This is because starting from the origin, we always have some
nonzero chance to make it to w, and (because we return to the origin infinitely many
times) we get infinitely many tries.

If G is a graph on which we return infinitely many times to the origin, we call G recurrent;
if it is a graph where there is a chance that we will never return to the origin, we call G
transient.

Theorem 5. The one-dimensional lattice graph Z is recurrent.

Proof. Let 0 be the origin, without any loss of generality. Using our earlier discussion, we
know that

p(r)
esc =

i0
C0

=
1

C0
· v(0)

Reff
=

1

C0Reff
.

We know that the resistance of a string of r resistors in a row is r, from our earlier discussion
about resistors in series. Consequently, because there are two such strings in parallel from
the origin to distance r for any r, we know that their combined resistance is 1

1
r

+ 1
r

= r
2 .

Therefore, because the conductance of the origin is 1 + 1 = 2, we have

p(r)
esc =

1

2 · r/2
=

1

r
.

The limit as r goes to infinity of this quantity is 0; therefore, this walk is recurrent.
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Theorem 6. The two-dimensional lattice graph Z2 is recurrent.

Proof. Take our graph, turn it into an electrical network with origin = (0, 0), and perform
the following really clever trick: for every r, let Vr be the collection of all of the vertices
that are distance r from the origin under the taxicab metric (i.e. shortest length of a path.)
Take our graph and short all of Vr’s vertices into one huge clump, for each r: i.e. take the
collection of all of the vertices at distance r, and just stick them all together! In essence,
we are adding wires between all of the vertices at distance r with resistance 0, which (if you
think of these wires not as connecting vertices that didn’t use to be connected, but rather
as replacing the wires of resistance “∞” between such vertices) is decreasing the resistance
between certain vertices. We know that this reduces the overall resistance, because of
Rayleigh’s principle; therefore, we know that if this graph is recurrent, Z2 must be as well.

What does this process do to the graph (Z2)(r)? Well, it produces the following picture:

Note that there are 8n + 4 edges between the vertices at distance n and the vertices at
distance n + 1, which we prove by induction:

• The base case is clearly true: there are 4 edges from the origin to the points (±1, 0),
(0,±1) that are distance 1 from the origin.

• Now, notice that the collection of points at distance n forms a diamond, with corners
given by the points (±n, 0), (0,±n) and side points given by points of the form (a, b)
with |a|+ |b| = n. There are 4 corner points and 4(n− 1) side points, an observation
that you can either simply take as obviously true or as something we are proving by
induction in the course of this proof.

• Each corner point has three edges connecting to points of distance n+1, and each side
point has two edges connecting to points at distance n + 1. Therefore, by induction,
we know that there are 3 · 4 + 2 · 4(n− 1) = 8n + 4 edges to points at distance n + 1!
(Of these edges at distance n+1, the new corner points each have one edge to a point
at distance n, while the side points each have 2 edges to points at distance n. This,
plus our observation that there are 8n+ 4 edges in total, tells us that there are 4 new
corner points and (8n + 4 − 4)/2 = 4n = 4((n + 1) − 1) new side points, if you were
worried about that.)

What is the resistance here? Well: if there are 8n+4 resistors between node n and node
n + 1, we can regard our graph as equivalent to the path on {0, . . . r} where the resistance
between vertices n and n + 1 is 1

8n+4 :
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By adding these resistances together, we can finally calculate the effective resistance of this
“shorted” (Z2)(r):

r∑
i=1

1

8i + 4
.

This sum diverges to infinity! Therefore, the current on these graphs, and thus the p
(r)
esc’s,must

converge to 0. So (Z2)(r) is also recurrent.

Lemma 7. Suppose C is a circuit with two vertices x, y that are not connected by a resistor
and are at the same potential: i.e. v(x) = v(y). Then shorting together x and y does not
change the voltages or currents in the circuit.

Proof. HW!

Theorem 8. The three-dimensional lattice graph Z3 is transient.

Proof. For Z2, the trick we used was to “short” a bunch of vertices together, and show
that the resulting graph (which was simpler, even though its resistances were “lower”)
was recurrent. Here, in Z3, we’re going to “cut” a number of resistors, and show that
the resulting (simpler, higher-resistance) graph is transitive! (The normal proof of this
theorem is much more difficult without these observations; it’s only with this “shorting”
and ”cutting” that we can pull this off with such relative ease2. )

In particular: lattices are hard to calculate resistances on. Let’s try something simpler
for a warm-up: a tree!

For example, let’s consider the infinite binary tree graph T2, where each edge has resis-
tance 1, and we perform the standard trick of grounding everything at some cutoff distance
r and put a potential of one volt at the root. Notice that (by symmetry) all of the nodes at
any fixed distance k from the origin have the same potential: therefore, we can short them
all together without changing the overall resistance of our circuit.

By using our earlier observations on resistors in parallel, we get that the above circuit is
equivalent to the circuit below:

2Insert your own “short-cut” pun here.
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This has resistance
∑

1/2n = 1.
Naively, we might hope that we can just find a copy of T2 in Z3, and be done with our

argument. However, the number of nodes at distance n from the root of T2 is 2n, while the
number of nodes that are distance ≤ n from the origin in Z3 is O(n2): so we’re not going
to be able to nicely fit a binary tree in Z3! What will we do?

Answer: we will be clever. Specifically, let’s stay with the tree structure. Binary,
however, may have been overkill: perhaps the sum

∑
1/2n converges far faster than we

need! Instead, we could aim for a tree who splits often enough that we’ll get *some* sort
of convergent thing at the end of the day, but not so fast that we can’t fit it in Z3. (This
seems like a plausible goal: things like the sum

∑ 1
n2 converge, so we certainly don’t need

as much branching as the binary tree T2.)
To do this, consider the following kind of“tree:”

As currently drawn: not a tree. However, if you pretend that each of the green nodes are
“doubled”, by creating two vertices at each of those locations and passing only one branch
through each node, it’s a tree! Suppose for the moment that this picture is not lying to
you: that the only overlapping parts of this tree are at the green vertices, and no branches
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or other such things overlap. Then, because the green nodes are at the same distances from
the origin in the tree version of this graph, we know that they have the same voltage passing
through them by symmetry — so there is no difference between the voltage/resistance/etc
of the “tree” as drawn in our picture and the tree as realized by splitting the green nodes!

To give an explicit construction for the above picture: this tree is constructed by taking
the positive octant of Z3 and starting from the origin. At the origin and each vertex with
distance

∑r
n=1 2n for every r ≥ 1 (i.e. at the blue nodes,) our tree “branches” and creates

three paths from these blue nodes: one branch that continues infinitely in the positive-x
direction from that blue vertex, one that continues infinitely in the positive-y direction from
that blue vertex, and one that continues infinitely in the positive-z direction from that blue
vertex.

Notice that our tree only intersects at the “green” vertices in this picture, and specifically
that these green vertices never coincide with one of these “blue” vertices. This is not hard to
see: suppose that two tree branches managed to overlap at a blue vertex v that is distance∑r

n=1 2n from the origin. Then there must be two distinct blue vertices w1, w2 that we
traveled from on distinct paths of length 2r to get to v, both of which are distance

∑r−1
n=1 2n

from the origin. But this cannot happen: if we look at our two distinct paths of length 2r,
they are forming two sides of a square with side length 2r in Z3 with v as one of its corners.
Because the sum

∑r−1
n=1 2n = 2r − 2 < 2r, it is impossible for the two points w1, w2 to be

distance
∑r−1

n=1 2n from the origin and also be the two corners opposite v in this square.
Therefore our tree as drawn in R3 only overlaps at nodes that are not blue nodes, and

therefore in particular only overlaps at vertices (i.e. it does not overlap on edges.) So, if we
split it at each of these green nodes, we get an actual tree; moreover, because these vertices
in the split tree all have the same voltages by symmetry, we can (again) see that there is
no difference between the voltage/resistance/etc of the “tree” as drawn in our picture and
the tree as realized by splitting the green nodes.

By identifying nodes of distance
∑r

n=1 2n for every n from the origin, the graph on this
tree restricted to the distances

∑r
n=1 2n is equivalent to a circuit of the form

By applying our known results about resistors in series and parallel, we can see that the
total resistance between any two nodes n− 1, n in the above circuit is

2n

3n
.
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Therefore, our tree at stage R has total resistance

r∑
n=1

2n

3n
=

1− (2/3)r+1

1− (2/3)
− 1.

As r goes to infinity, this goes to 2; therefore, the current iA = v(A)/Reff = 1/2 at infinity

is positive, and consequently the value pesc = iA/CA = 1/2
3 = 1/6 is positive and nonzero.

Therefore, by our earlier discussion, there is a nonzero chance of escape! In other words,
our random walker may never return to the origin (and in fact, we’ve shown that they have
at least a 1/6-th chance to do so!)

This gives us the following corollary, which is an excellent note to end our lecture on:

Corollary 9. A lost drunkard will come home if and only if it cannot fly.
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