
Math 137B Professor: Padraic Bartlett

Homework 6: Sequential Dynamical Systems

Due Thursday, week 9 UCSB 2014

Pick three of the problems in this set to solve! Solutions need justification and proof to
receive full credit: i.e. it is not enough to simply draw the answer.

1. Given a SDS [FG, π] on a graph with n vertices with states from some set K, we can
form its phase space as the following directed graph:

Vertices: The elements of Kn.

Edges: Draw an edge from ~x to ~y whenever [FG, π](~x) = ~y.

We say that two SDS’s are dynamically equivalent if their resulting phase spaces are
isomorphic graphs. How many dynamically inequivalent SDS’s exist on the graph G = C4

with the update map parity(xi−1, xi, xi+1) = xi−1 + xi + xi+1 mod 2? (In other words,
how many update orders on this graph+update function pairing lead to dynamically
inequivalent SDS’s?)

2. In class, we proved that if ~x is a fixed point of a SDS [FG, π], then it is a fixed point of
[FG, π

′] for any other permutation π′ of the vertices of G. What happens if we instead
look at “word-SDS’s,” where we allow π to simply be any sequence of the vertices of G:
does this theorem still hold? What if we only allow words that use each vertex at least
once?

3. (This is the Cauchy-Frobenius lemma1 ; only do this problem if you have not done it in
an algebra class before.) Given a group G and a set X, we can often create a way for
the group G to act on the set X. We define this formally as follows:

Definition. A group action of a group G on a set X is a function G×X → X, typically
denoted g · x, with the following two properties:

• Compatibility: for any g, h ∈ G, g · (h · x) = (g · h) · x. In other words, if I first
act on an element of X by h and then act on it by g, this should be the same as
acting on it once by the element g ·h. Note that g ·h is calculated using the group’s
operation, and not our action.

• Identity: e · x = x, for any x ∈ X.

A natural example of a group action is the group of permutations Sn acting on a collection
of n objects: each permutation map sends some object to another object.

1Also known in the literature as the Burnside lemma, or often as “The lemma that is not Burnside’s.” This
is because (1) Burnside did not prove this lemma, and only cited it in his textbook with a credit to Frobenius.
Frobenius also was not the first to this lemma, as Cauchy knew about it forty years before Frobenius’s first text
mentioned it. Math history!
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Given a group action, we define the orbit of an element x ∈ X as the following set:

G(x) = {g · x | g ∈ G}.

We also define the fixed points corresponding to an element g ∈ G as the following set:

Fix(g) = {x ∈ X | g · x = x}.

(a) Show that any two orbits must either be disjoint or identical: i.e. that for any
x, y ∈ X, either G(x) = G(y) or G(x) ∩G(y) = ∅.

(b) Show that the number of distinct orbits can be counted by the following formula:

1

|G|
∑
g∈G
|Fix(g)|.

4. Find all of the maps f : F3
2 → F2 that induce invertible SDS’s over the graph Cn. Each

of these maps have rule numbers, as defined in our discussion of cellular automata (see
below.) What are those rule numbers?

5. Cellular automata, as mentioned in class, are closely related to sequential dynamical
systems in a number of ways. Formally, we define a cellular automaton over Zk with
states in F2 as the following set of objects:

Graph: The integer lattice Zk. Sometimes, we will work with (Z/nZ)k instead, in cases
where we do not want to work with an infinite grid.

States: Each vertex has a state in F2. Typically, we ask that only finitely many vertices cor-
respond to the state 1, which we think of as denoting “life” or “activity;” conversely,
we regard 0 as denoting death or quiescence.

Neighborhood: The Moore neighborhood2 of any vertex ~x consists of all vertices ~x′ such that
|xi − x′i| ≤ 1, for every coördinate i. So, for a cellular automata on Z2, each vertex
has eight vertices in its neighborhood.

Local update function: Some function f : F3k
2 → F2, that takes in the state of a vertex and its neighbors

and outputs some updated state for that vertex.

Initial state: Some element ~x ∈ (F2)
Zk

that describes the initial state of every vertex in Zk.

Given a cellular automata, we can define its global update function as the map Φf

that applies the local update map f to the state of every vertex simultaneously.

(a) Explain why there are 256 possible update maps for a cellular automata on Z1.

(b) The Wolfram enumeration of update maps assigns to each update map on Z1 a
number from 0 to 255, written out in binary, as follows:

(xi−1, xi, xi+1) 111 110 101 100 011 010 001 000

f a7 a6 a5 a4 a3 a2 a1 a0

2There are, of course, many notions of neighborhood one could take. For example, you could consider as the
neighborhood of any vertex all of the vertices that are distance at most one from this vertex; this is the Von
Neumann notion of neighborhood. We will work with Moore neighborhoods unless otherwise specified.
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For example, the AND function

(xi−1, xi, xi+1) 111 110 101 100 011 010 001 000

AND 1 0 0 0 0 0 0 0

is assigned the number 10000000binary = 128dec. We call this number the “local rule”
for its corresponding cellular automaton.

Find the local rules for NAND, NOR, and Parity.

(c) Show that the phase spaces for the cellular automata with local rules 124, 193 and
110 are all isomorphic.

6. Recall, from class, our definition of symmetric: we said that a function f is symmetric
if it does not care about the order of its inputs: i.e. f(x1, . . . xn) = f(xπ(1), . . . xπ(n)),
for any permutation π. How many cellular automata over Z1 with states in F2 and a
symmetric update function are dynamically inequivalent?

7. In this exercise, we show that there are at most 88 non-equivalent phase spaces for cellular
automata over Z1 with states in F2. Make the following definitions:

• inv(x1, . . . xn) = (1− x1, . . . 1− xn),

• rev(x1, . . . xn) = (xn, . . . x1),

• γ(a7, a6, a5, a4, a3, a2, a1, a0) = (1−a0, 1−a1, 1−a2, 1−a3, 1−a4, 1−a5, 1−a6, 1−a7),
and

• δ(a7, a6, a5, a4, a3, a2, a1, a0) = (a7, a3, a5, a1, a6, a2, a4, a0).

(a) Take any automata Φf . Prove that the function inv ◦Φf ◦ inv−1 is in fact equal to
the cellular automata Φγ(f); consequently, Φf and Φγ(f) are isomorphic.

(b) Similarly, show that Φδ(f) is equal to rev ◦ Φf ◦ rev−1, and therefore that Φf and
Φδ(f) are isomorphic.

(c) Consider the set G = {id, γ, δ, γ ◦ δ}. Show that this is a group.

(d) The group G acts on the set R of rules for our cellular automata (i.e. given any
element α of our group and any rule f , we can get a new rule α ◦ f .) You proved
in (a) and (b) that this action sends a rule f to another rule that it is dynamically
equivalent to. Therefore, the number of nonequivalent rules is bounded above by
the number of distinct orbits of this group action. Use the Frobenius lemma to show
that this quantity is bounded about by 88.

8. (Harder, or at least more tedious.) Show that there are exactly 88 non-equivalent phase
spaces for for cellular automata over Z1 with states in F2.

3


