Math 137B

Homework 5: Planar and Nonplanar Graphs

Due Thursday, week 8

UCSB 2014

Pick three of the problems in this set to solve! Solutions need justification and proof to receive full credit: i.e. it is not enough to simply draw the answer.

- 1. This problem modifies Kuratowski's theorem (i.e. that graphs are planar iff they do not contain subdivided K_5 's or $K_{3,3}$'s) to Wagner's theorem: a graph is planar iff it does not contain one of K_5 or $K_{3,3}$ as **minors**¹. Perform this modification as follows:
 - (a) Suppose we take a planar graph G and delete an edge or a vertex. Prove G is planar.
 - (b) Suppose we take a planar graph G and contract an edge e in G to a point: i.e. that we form the graph $G \cdot e$. Prove that $G \cdot e$ is planar.
 - (c) Suppose that G is a graph such that it contains one of K_5 or $K_{3,3}$ as a minor. Explain why G cannot be planar.
 - (d) Suppose that G does not contain either of K_5 or $K_{3,3}$ as minors. Explain why Kuratowski's theorem says that G is planar.
- 2. Given a connected planar graph G, we can form the **dual** to this graph, G^* , as follows:
 - Vertices of G^* : the faces of G.
 - Edges of G^* : connect two faces F_1 , F_2 if they share an edge in common.
 - (a) Prove that G^* is a connected planar graph.
 - (b) Show that the dual of G^* , i.e. $(G^*)^*$, is just the graph G again.
 - (c) Draw the five platonic solids as planar graphs.
 - (d) Find the dual of each solid.
- 3. A graph G is called **outerplanar** if it can be drawn in the plane in such a way that every vertex of G lies on the outer face of G.
 - (a) Show that K_4 and $K_{2,3}$ are planar but not outerplanar.
 - (b) Show that every outerplanar graph has a vertex of degree at most 2.
- 4. Take any outerplanar graph G. Form the dual G^* of G, and delete the vertex of G^* that corresponded to the "outer" face of G; call this new graph G^{\ddagger} . Show that G^{\ddagger} is a **forest**: i.e. it is a graph that can be drawn as a collection of disjoint trees.
- 5. Prove that a graph G is outerplanar if and only if it contains no subgraph that is a subdivision of K_4 or $K_{2,3}$. (Hint: while you could try to recreate an outerplanar version of Kuratowski's theorem, a saner approach is to actually look for a way to modify G and simply **apply** Kuratowski's theorem.)

¹A graph G contains another graph H as a **minor** if there is some way to contract and delete edges/vertices from G to get the graph H