Math 137B

Homework 2: Cayley Graphs

Due Thursday, week 4

UCSB 2014

Pick five of the problems in this set to solve! Solutions need justification and proof to receive full credit: i.e. it is not enough to simply draw the answer.

- 1. Draw the Cayley graph for the quaternion group $\langle a, b \mid a^2 = b^2 = (ab)^2 \rangle$.
- 2. Create the Cayley graph for S_4 with generators (1, 2, 3, 4) and (1, 2).
- 3. Show that the dihedral group D_{2n} discussed in class can be expressed via the presentation $\langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle$. Find its Cayley graph.
- 4. Let \mathbb{Z}_n denote the group given by taking the set $\mathbb{Z}/n\mathbb{Z}$ along with the addition mod n operation. Find the Cayley graph of $\mathbb{Z}_n \times \mathbb{Z}_m$ with respect to the generators (1,0), (0,1), for any n, m.
- 5. For any odd n, find a group G with generating set S such that its Cayley graph is an oriented K_n . (An **oriented** K_n is just a copy of the complete graph K_n where we assign a direction to each edge. These graphs are also called **tournaments**.)
- 6. Let Q_n denote the graph corresponding to the *n*-dimensional unit cube. Find a group G with generating set S such that its Cayley graph is the unoriented graph Q_n . (By an **unoriented** graph, we are asking that whenever we have an edge (x, y) in our Cayley graph, we want to also have the reverse edge (y, x).)
- 7. Recall, from last quarter, the following definitions:

Definition. Given two graphs G_1, G_2 with vertex sets V_1, V_2 and edge sets E_1, E_2 , we say that a function $f: V_1 \to V_2$ is an **isomorphism** if the following two properties hold:

- f is a bijection.
- (x, y) is an edge in E_1 if and only if (f(x), f(y)) is an edge in E_2 .

An **automorphism** on a graph G is an isomorphism from that graph to itself.

Using this definition, we say that a graph G is **vertex-transitive** if given any two vertices v_1, v_2 of G, there is an automorphism f on G such that $f(v_1) = v_2$. In essence, vertex-transitive graphs have a lot of symmetry: up to the labeling, we cannot distinguish any two vertices.

Prove that any Cayley graph is a vertex-transitive graph.

- 8. Prove or disprove: there is no group has the Petersen graph as its Cayley graph.
- 9. Prove or disprove: there is no group has the dodecahedron graph as its Cayley graph.

10. (Applicable mostly to students with musical background; from VanWyk's class at James Madison.) Consider the following "twelve-tone group," formed by taking the twelve pitches $C, C^{\ddagger}, \ldots B$:

	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B
C	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B
C^{\sharp}	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C
D	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}
D^{\sharp}	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D
E	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}
F	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E
F^{\sharp}	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F
G	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}
G^{\sharp}	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G
A	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}
A^{\sharp}	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A
B	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}

(a) Explain briefly why this group is isomorphic to \mathbb{Z}_{12} .

(b) Write out the Cayley graph given by this group, with generator F.

(c) Interpret (b): what is this structure?