Math 137B	Professor: Padraic Bartlett	
Due Thursday, week 4	Homework 2: Cayley Graphs	

Pick five of the problems in this set to solve! Solutions need justification and proof to receive full credit: i.e. it is not enough to simply draw the answer.

1. Draw the Cayley graph for the quaternion group $\left\langle a, b \mid a^{2}=b^{2}=(a b)^{2}\right\rangle$.
2. Create the Cayley graph for S_{4} with generators $(1,2,3,4)$ and $(1,2)$.
3. Show that the dihedral group $D_{2 n}$ discussed in class can be expressed via the presentation $\left\langle a, b \mid a^{n}=b^{2}=(a b)^{2}=1\right\rangle$. Find its Cayley graph.
4. Let \mathbb{Z}_{n} denote the group given by taking the set $\mathbb{Z} / n \mathbb{Z}$ along with the addition $\bmod n$ operation. Find the Cayley graph of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ with respect to the generators $(1,0),(0,1)$, for any n, m.
5. For any odd n, find a group G with generating set S such that its Cayley graph is an oriented K_{n}. (An oriented K_{n} is just a copy of the complete graph K_{n} where we assign a direction to each edge. These graphs are also called tournaments.)
6. Let Q_{n} denote the graph corresponding to the n-dimensional unit cube. Find a group G with generating set S such that its Cayley graph is the unoriented graph Q_{n}. (By an unoriented graph, we are asking that whenever we have an edge (x, y) in our Cayley graph, we want to also have the reverse edge (y, x).)
7. Recall, from last quarter, the following definitions:

Definition. Given two graphs G_{1}, G_{2} with vertex sets V_{1}, V_{2} and edge sets E_{1}, E_{2}, we say that a function $f: V_{1} \rightarrow V_{2}$ is an isomorphism if the following two properties hold:

- f is a bijection.
- (x, y) is an edge in E_{1} if and only if $(f(x), f(y))$ is an edge in E_{2}.

An automorphism on a graph G is an isomorphism from that graph to itself.
Using this definition, we say that a graph G is vertex-transitive if given any two vertices v_{1}, v_{2} of G, there is an automorphism f on G such that $f\left(v_{1}\right)=v_{2}$. In essence, vertextransitive graphs have a lot of symmetry: up to the labeling, we cannot distinguish any two vertices.

Prove that any Cayley graph is a vertex-transitive graph.
8. Prove or disprove: there is no group has the Petersen graph as its Cayley graph.
9. Prove or disprove: there is no group has the dodecahedron graph as its Cayley graph.
10. (Applicable mostly to students with musical background; from VanWyk's class at James Madison.) Consider the following "twelve-tone group," formed by taking the twelve pitches $C, C^{\sharp}, \ldots B$:

	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B
C	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B
C^{\sharp}	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C
D	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}
D^{\sharp}	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D
E	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}
F	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E
F^{\sharp}	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F
G	G	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}
G^{\sharp}	G^{\sharp}	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G
A	A	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}
A^{\sharp}	A^{\sharp}	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A
B	B	C	C^{\sharp}	D	D^{\sharp}	E	F	F^{\sharp}	G	G^{\sharp}	A	A^{\sharp}

(a) Explain briefly why this group is isomorphic to \mathbb{Z}_{12}.
(b) Write out the Cayley graph given by this group, with generator F.
(c) Interpret (b): what is this structure?

