Math 137a
Lecture 5: Mycielski Graphs

Week 3
UCSB 2014

In class on Tuesday, we proved (with little effort) that for any graph G, we have

$$
\omega(G) \leq \chi(G) \leq \Delta(G)+1
$$

We noticed that for bipartite graphs, there was often a very big gap between $\Delta(G)+1$ and $\chi(G)$. With the second half of class, we studied something called the Mycielski construction, which also showed that there was a big gap between $\omega(G)$ and $\chi(G)$! This isn't in your text, so I wrote up what we did here for reference's sake.

Example. The Mycielski construction is a method for turning a triangle-free graph with chromatic number k into a larger triangle-free graph with chromatic number $k+1$. It works as follows:

- As input, take a triangle-free graph G with $\chi(G)=k$ and vertex set $\left\{v_{1}, \ldots v_{n}\right\}$.
- Form the graph G^{\prime} as follows: let $V\left(G^{\prime}\right)=\left\{v_{1}, \ldots v_{n}\right\} \cup\left\{u_{1}, \ldots u_{n}\right\} \cup\{w\}$.
- Start with $E\left(G^{\prime}\right)=E(G)$.
- For every u_{i}, add edges from u_{i} to all of v_{i} 's neighbors.
- Finally, attach an edge from w to every vertex $\left\{u_{1}, \ldots u_{n}\right\}$.

Starting from the triangle-free 2-chromatic graph K_{2}, here are two consecutive applications of the above process:

Proposition 1. The above process does what it claims: i.e. given a triangle-free graph with chromatic number k, it returns a larger triangle-free graph with chromatic number $k+1$.

Proof. Let G, G^{\prime} be as described above. For convenience, let's refer to $\left\{v_{1}, \ldots v_{n}\right\}$ as V and $\left\{u_{1}, \ldots u_{n}\right\}$ as U. First, notice that there are no edges between any of the elements in U in G^{\prime}; therefore, any triangle could not involve two elements from U. Because G was trianglefree, it also could not consist of three elements from V; finally, because w is not connected to any elements in V, no triangle can involve w. So, if a triangle exists, it must consist of two elements v_{i}, v_{j} in V and an element u_{l} in U; however, we know that u_{l} 's only neighbors
in V are the neighbors of v_{l}. Therefore, if $\left(v_{i}, v_{j}, u_{l}\right)$ was a triangle, $\left(v_{i}, v_{j}, v_{l}\right)$ would also be a triangle; but this would mean that G contained a triangle, which contradicts our choice of G.

Therefore, G^{\prime} is triangle-free; it suffices to show that G^{\prime} has chromatic number $k+1$.
To create a proper $k+1$-coloring of G^{\prime} : take a proper coloring $f: V(G) \rightarrow\{1, \ldots k\}$ and create a new coloring map $f^{\prime}: V\left(G^{\prime}\right) \rightarrow\{1, \ldots k+1\}$ by setting

- $f^{\prime}\left(v_{i}\right)=f\left(v_{i}\right)$,
- $f^{\prime}\left(u_{i}\right)=f\left(v_{i}\right)$, and
- $f(w)=k+1$.

Because each u_{i} is connected to all of v_{i} 's neighbors, none of which are colored $f\left(v_{i}\right)$, we know that no conflicts come up there; as well, because $f(w)=k+1$, no conflicts can arise there. So this is a proper coloring.

Now, take any k-coloring g of G^{\prime} : we seek to show that this coloring must be improper, which would prove that G^{\prime} is $k+1$-chromatic. To do this: first, assume without any loss of generality that $f(w)=k$ (it has to be colored something, so it might as well be k.)

Then, because w is connected to all of U, the elements of U must be colored with the elements $\{1, \ldots k-1\}$. Let $A=\left\{v_{i} \in V: g\left(v_{i}\right)=k\right\}$. We will now use U to recolor these vertices with the colors $\{1, \ldots k-1\}$: if we can do this properly, then we will have created a $k-1$ proper coloring of G, a k-chromatic graph (and thus arrived at a contradiction.)

To do this recoloring: change g on the elements of A so that $g\left(v_{i}\right)$'s new color is $g\left(u_{i}\right)$. We now claim that g is a proper $k-1$ coloring of G itself. To see this: take any edge $\left\{v_{i}, v_{j}\right\}$ in G. If both of $v_{i}, v_{j} \notin A$, then we didn't change the coloring of v_{i} and v_{j}; so this edge is still not monochromatic, because g was a proper coloring of G^{\prime}. If $v_{i} \in A$ and $v_{j} \notin A$, then v_{j} is a neighbor of v_{i} and thus (by construction) u_{i} has an edge to v_{j}. But this means that $g\left(u_{i}\right) \neq g\left(v_{j}\right)$, because g was a proper coloring of G^{\prime} : therefore, this edge is also not monochromatic!

Because there are no edges between elements of A (as they were all originally colored k under g, and therefore there weren't any edges between them,) this covers all of the cases: so we've turned g into a $k-1$ coloring of a k-chromatic graph. As this is impossible, we can conclude that g cannot exist - i.e. G^{\prime} cannot be k-colored! So $\chi\left(G^{\prime}\right)=k+1$, as claimed.

As the example above illustrates, our bounds can (unfortunately) be rather loose: the Mycielskians (graphs acquired by taking P_{2} and repeatedly applying the above process) have $\omega(M)=2$, and yet have arbitrarily high chromatic number.

