
Math 137a Professor: Padraic Bartlett

Lecture 5: Mycielski Graphs

Week 3 UCSB 2014

In class on Tuesday, we proved (with little effort) that for any graph G, we have

ω(G) ≤ χ(G) ≤ ∆(G) + 1.

We noticed that for bipartite graphs, there was often a very big gap between ∆(G) + 1
and χ(G). With the second half of class, we studied something called the Mycielski
construction, which also showed that there was a big gap between ω(G) and χ(G)! This
isn’t in your text, so I wrote up what we did here for reference’s sake.

Example. The Mycielski construction is a method for turning a triangle-free graph with
chromatic number k into a larger triangle-free graph with chromatic number k+1. It works
as follows:

• As input, take a triangle-free graph G with χ(G) = k and vertex set {v1, . . . vn}.

• Form the graph G′ as follows: let V (G′) = {v1, . . . vn} ∪ {u1, . . . un} ∪ {w}.

• Start with E(G′) = E(G).

• For every ui, add edges from ui to all of vi’s neighbors.

• Finally, attach an edge from w to every vertex {u1, . . . un}.

Starting from the triangle-free 2-chromatic graph K2, here are two consecutive applications
of the above process:

Proposition 1. The above process does what it claims: i.e. given a triangle-free graph with
chromatic number k, it returns a larger triangle-free graph with chromatic number k + 1.

Proof. Let G,G′ be as described above. For convenience, let’s refer to {v1, . . . vn} as V and
{u1, . . . un} as U . First, notice that there are no edges between any of the elements in U in
G′; therefore, any triangle could not involve two elements from U . Because G was triangle-
free, it also could not consist of three elements from V ; finally, because w is not connected
to any elements in V , no triangle can involve w. So, if a triangle exists, it must consist of
two elements vi, vj in V and an element ul in U ; however, we know that ul’s only neighbors
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in V are the neighbors of vl. Therefore, if (vi, vj , ul) was a triangle, (vi, vj , vl) would also be
a triangle; but this would mean that G contained a triangle, which contradicts our choice
of G.

Therefore, G′ is triangle-free; it suffices to show that G′ has chromatic number k + 1.
To create a proper k + 1-coloring of G′: take a proper coloring f : V (G) → {1, . . . k}

and create a new coloring map f ′ : V (G′)→ {1, . . . k + 1} by setting

• f ′(vi) = f(vi),

• f ′(ui) = f(vi), and

• f(w) = k + 1.

Because each ui is connected to all of vi’s neighbors, none of which are colored f(vi), we
know that no conflicts come up there; as well, because f(w) = k + 1, no conflicts can arise
there. So this is a proper coloring.

Now, take any k-coloring g of G′: we seek to show that this coloring must be improper,
which would prove that G′ is k+ 1-chromatic. To do this: first, assume without any loss of
generality that f(w) = k (it has to be colored something, so it might as well be k.)

Then, because w is connected to all of U , the elements of U must be colored with the
elements {1, . . . k − 1}. Let A = {vi ∈ V : g(vi) = k}. We will now use U to recolor these
vertices with the colors {1, . . . k − 1}: if we can do this properly, then we will have created
a k − 1 proper coloring of G, a k-chromatic graph (and thus arrived at a contradiction.)

To do this recoloring: change g on the elements of A so that g(vi)’s new color is g(ui).
We now claim that g is a proper k−1 coloring of G itself. To see this: take any edge {vi, vj}
in G. If both of vi, vj /∈ A, then we didn’t change the coloring of vi and vj ; so this edge
is still not monochromatic, because g was a proper coloring of G′. If vi ∈ A and vj /∈ A,
then vj is a neighbor of vi and thus (by construction) ui has an edge to vj . But this means
that g(ui) 6= g(vj), because g was a proper coloring of G′: therefore, this edge is also not
monochromatic!

Because there are no edges between elements of A (as they were all originally colored k
under g, and therefore there weren’t any edges between them,) this covers all of the cases:
so we’ve turned g into a k−1 coloring of a k-chromatic graph. As this is impossible, we can
conclude that g cannot exist – i.e. G′ cannot be k-colored! So χ(G′) = k + 1, as claimed.

As the example above illustrates, our bounds can (unfortunately) be rather loose: the
Mycielskians ( graphs acquired by taking P2 and repeatedly applying the above process)
have ω(M) = 2, and yet have arbitrarily high chromatic number.
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