
Math 137a Professor: Padraic Bartlett

Homework 2: Colorings

Due Tuesday, January 21, in class UCSB 2014

Homework problems need to show work and contain proofs in order to receive full credit.
Simply stating an answer is only half of the problem in mathematics; you also need to include
an argument that persuades your audience that your answer is correct.

THis HW set should be split into two pieces when it is turned in. One part should
contain one selected problem that you want to be carefully graded on a ten point scale!
The other part should contain the other ten problems, each of which will be graded on a
one-point scale (i.e. 1/.5/0 for work that is correct/mostly correct but flawed/incorrect.)

Have fun! Also, there are two bonus questions. Solve either and we’ll, um, get your
work published in a good journal?

1. In Tuesday, week 3’s class, we introduced the “greedy algorithm” for coloring vertices
(described on p.120 of your text, if you’ve forgotten how it goes.) Using this bound,
we proved that for any graph G, we had χ(G) ≤ ∆(G) + 1. However, we mentioned
that for some graphs, this bound was very weak, and gave some examples. However,
this didn’t show that running the algorithm actually gave a worse coloring than the
theoretical best: just that it might!

Do this: i.e. find a graph G and vertex enumeration (v1, . . . vn) of V (G) such that
using the greedy algorithm to color G’s vertices uses more than χ(G) colors.

2. Show that for any graph G, there is some enumeration (v1, . . . vn) of V (G) such that
using the greedy algorithm to color G’s vertices uses exactly χ(G) colors. (This is
sort of the converse of problem 1: in that problem, you proved that it is possible for
the greedy algorithm to mess up, while in this problem you’re proving that it is also
possible that the greedy algorithm does not mess up.)

3. Define the unit distance graph, denoted in the literature as R2, as follows:

• Vertex set: the collection of all points in R2.

• Edge set: connect two vertices if their corresponding points in R2 are distance 1
apart in the plane.

This problem asks you to find the chromatic number of R2.

(a) One easy lower bound is that you’ll need at least three colors. This is because
there is an equilateral triangle with side length 1 in R2, and therefore if we’re
coloring all of R2 we’ll need to give those three points different colors, or we’ll
have an edge with monochromatic endpoints.

Improve this bound by 1: i.e. prove that χ(R2) ≥ 4.

(b) Find any finite upper bound on the chromatic number of R2: i.e. find some
n ∈ N such that χ(R2) ≤ n.
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4. On Thursday, we presented Kempe’s original proof of the four-color theorem from
1879, that stood for eleven years before someone found a flaw in the proof. Find that
flaw: i.e. show that Kempe’s algorithm for coloring graphs will fail for some specific
graph or family of graphs that you can come up with. (It may be easier to describe
a family of graphs than an explicit counterexample that is miscolored by Kempe’s
algorithm, but either is possible and neither is much more work than the other.)

5. In class on Tuesday, we described the Mycielski process, that takes in a triangle-free
graph with chromatic number k and outputs a triangle-free graph with chromatic
number k+ 1. The following problem is a stronger process: it aims to take in a graph
with chromatic number k that do not contain any C3, C4, or C5’s, and output a graph
with chromatic number k + 1 that still does not contain any C3, C4, or C5’s.

We do this as follows: Let G be a k-chromatic graph with no cycles of length 5 or
smaller, with vertex set {v1, . . . vn}. Construct a new graph G′ as follows:

• Let T be a set of kn vertices, {t1, . . . tkn} with no edges between them.

• Take
(
kn
n

)
disjoint copies of G, one for every n-subset of {1, . . . kn} and index

them by these subsets: i.e. for any subset {i1, . . . in} ⊆ {1, . . . kn}, make a
subgraph G{i1,...in}.

• Take each G{i1,...in}, and connect the vertices of G to the corresponding ver-
tices in T given by G’s indexing subset. In other words, throw in the edges
{v1, ti1}, {v2, ti2}, . . . {vn, tin} to our graph made by the the G’s and the set T .

Show that this graph still has girth ≥ 6, as well as chromatic number > χ(G).

6. A graph G = (V,E) is called k-critical if χ(G) = k, while for any v ∈ V , χ(G−{v}) ≤
k − 1. (Note: the graph G − {v} is precisely the graph acquired by taking G and
deleting the vertex v along with all edges incident to v.) In other words, G has
chromatic number k, but G with any vertex deleted has chromatic number strictly
less than k.

(a) Prove that any graph G with χ(G) = k has a k-critical subgraph.

(b) Prove that any k-critical graph is connected.

(c) Prove that if G is k-critical, then G− {v} has chromatic number k − 1.

7. Prove that if G is k-critical, then the degree of any vertex in G is at least k − 1.

8. Classify the set of all 3-critical graphs.

9. A graph is called double-critical if χ(G\{x, y}) = χ(G)−2, for any pair of adjacent
vertices in G. Suppose that G is a double-critical graph on n ≤ 4 vertices. Prove that
G is the complete graph Kn.

10. Given a collection I{I1, . . . In} of intervals on the real line, define the interval graph
GI on the vertex set {v1, . . . vn} by drawing an edge {vi, vj} if and only if Ii ∩ Ij 6= ∅.
Show that any interval graph is perfect: i.e. that for any induced subgraph H of G,
we have χ(H) = ω(H).
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11. A partially ordered set P = (X,<) is a collection of vertices {x1, . . . xn}, along
with a relation < that satisfies the following two properties:

• Antisymmetry: if x < y, we do not have y < x.

• Transitivity: if x < y and y < z, we have x < z.

Given a partially ordered set P = (X,<), we can construct the comparability graph
GP corresponding to this set, by having V (GP ) = X, and E(GP ) = {{x, y} : x < y
or y < x}. Show that every compararbility graph is perfect.

Bonus! Determine χ(R2), for R2 the unit distance plane graph defined earlier.

Bonus! Show that if G is a double-critical graph on n vertices, then G is the complete graph
Kn.
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