
Math 137a Professor: Padraic Bartlett

Final!

Due Friday, March 21, by 1pm UCSB 2014

This test consists of ten problems. Roughly speaking, there is one problem for each week
of the class. These problems will be graded as follows:

10 points: Your performance on those ten problems, with one point alloted for each problem.

10 points: At some point in time between now and Friday, March 21, you should schedule a
30-minute block of time to meet with me. I will ask you about a few problems that I
will randomly choose from the set, and you will explain your reasoning to me for how
to solve those problems. I may also ask you about similar problems to those on the
set, the definitions you are using, and other such things. Points for this section will
be awarded on the following scale:

10 points: You correctly answer all of the questions put to you, and demonstrate a clear
mastery/knowlege of graph theory.

8− 9 points: You make some minor mistakes in your presentation, but can (with a bit of
assistance) prove most of the questions I ask you.

6− 7 points: You have some serious flaws in some of your answers, but can answer some of
the questions I ask you. It is clear that you understand the basic definitions and
have worked on the problems on this set, but your work is missing some key
pieces.

4− 5 points: You have made several key errors, and do not know some of the more fundamental
definitions and concepts we’ve worked on in this class. While you may get a few
things right, your overall performance is poor.

1− 3 points: You meet with me but do poorly and are unable to come up with coherent
answers to the questions asked. You do not know most of the basic concepts
we have discussed in class, and fundamentally do not seem prepared for further
study in graph theory.

0 points: You do not meet with me.

Resources allowed: You may collaborate with others. If you do so, you should cite the
other person on the problems you have collaborated on, and furthermore write up your
solutions separately and in your own words. So, for example, I should not look at two
solutions and see word-for-word identical proofs. Solutions that egregiously violate this
policy will not receive credit.

You may also consult textbooks and/or electronic resources for information. Again, if
you do this, you should cite the sources you have used and write up your solutions separately
and in your own words. Solutions that egregiously violate this policy will also not receive
credit.
Good luck and have fun!
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1. Let A be a collection of n points in R2 with the following property: given any two
points P,Q ∈ A, the distance between P and Q is at most 1. Show that there are no
more than n pairs of points that are exactly distance 1 apart.

2. Take a polygon P with n sides. Consider the following task: we want to station
observers at the vertices of P , such that they can guard the entire “outside” of P . In
this situation, we assume that the guards cannot “see through” P ’s walls, and can
only look out from their positions. For example, here is a polygon P being guarded
by four guards:

A polygon with observers guarding its outside. Observers are denoted by red vertices; sample sight

lines are drawn in pale red.

(a) Suppose that P is an arbitrary polygon with n vertices. What is the maximum
number of guards needed to guard P?

(b) Again, suppose that P is an arbitrary polygon with n vertices. What is the
minimum number of guards needed to guard P?

3. Take the graph K7. Color each of the edges of K7 either green or blue. We know,
by Ramsey’s theorem, that there is at least one triangle in this graph with edges all
the same color, because R(3, 3) = 6 < 7. Prove that there are actually at least four
triangles in this graph such that each triangle’s edges are all the same color.

4. Take a bipartite graph G. Without using our theorem that a graph is perfect if
and only if its complement is perfect, prove that χ(G) = ω(G). (Hint: While there are
many proofs, one of my favorites involves applying problem 9 from this final, along
with the observation that in any coloring of G’s vertices, no single color is associated
to more than two vertices (why?) There are other methods if you prefer, however.)

5. Suppose a graph G on n vertices contains n2/4 edges. Let λ1 denote the eigenvalue of
AG with largest magnitude. Prove that |λ1| ≥ n/2. (Note: an earlier version of this
problem told you some information about the number of 4-cycles. I think this was a
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red herring, in that you definitely don’t need it and I don’t think there’s an obvious
way to use it. If you want an upper bound, however, it’s great! But upper bounds
aren’t what I actually asked for [rather, they’re what I thought I asked for.])

6. Find all of the sets of parameter (10, k, λ, µ) such that there is a strongly regular graph
with those parameters. Explain why your collection of sets is complete.

7. On an earlier quiz, we defined the tri-color Ramsey number R(k, k, k) to be the
smallest natural number n such that in any (red, green, blue)-coloring of Kn, there is
a monochromatic Kk of some color. For any k ≥ 3, prove that

R(k, k, k) ≥ b3k/2c.

8. Consider the random graph process Gn,1/2, that creates a random graph by taking
each pair {v1, v2} of distinct vertices and randomly either drawing in an edge with
probability 1/2. Let N(G,C4) denote the number of distinct subgraphs of G that are
4-cycles, as defined in problem 5.

Prove that the expected number of 4-cycles in a random graph Gn,1/2 is

1

2k
· n!

(n− k)!
· 1

2k
,

where k = 4. In other words, show that if you take a random graph on n vertices,
you’d expect to see about this many distinct 4-cycles.

9. Let G = (V1, V2, E) be a bipartite graph. Consider the following two definitions:

• A pairing of G’s vertices is some subset of the edges of G, such that no vertex
shows up in more than one edge. A sample pairing is illustrated below:

• An observing set of G’s vertices is some subset of the vertices of G, such that
every edge of G is incident to at least one vertex in the observing set. A sample
observing set is illustrated below:
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Notice that in the above graph, the size of the largest matching possible (namely, 4)
was the size of the smallest vertex cover possible (again, 4.) Using the Max-Flow-
Min-Cut theorem, prove that this is true for any bipartite graph G: i.e. show that if
G is a bipartite graph, then the size of G’s largest pairing is the size of its smallest
observing set.

10. For any n, let Gn,n denote the n × n grid graph given by taking the subset of
the integer lattice corresponding to the values {1, . . . n} × {1, . . . n}. We draw a few
examples below:

G1,1 G2,2 G3,3 G4,4

For every n, determine ϕ(Gn,n); i.e. the smallest value of k such that Gn,n admits a
k-flow.
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