
Math 108B Professor: Padraic Bartlett

Lecture 5: The Schur Decomposition

Week 5 UCSB 2014

Repeatedly through the past three weeks, we have taken some matrix A and written A
in the form

A = UBU−1,

where B was a diagonal matrix, and U was a change-of-basis matrix.
However, on HW #2, we saw that this was not always possible: in particular, you proved

in problem 4 that for the matrix A =

[
1 1
0 1

]
, there was no possible basis under which A

would become a diagonal matrix: i.e. you proved that there was no diagonal matrix D and
basis B = {(b11, b21), (b12, b22)} such that

A =

[
b11 b12
b21 b22

]
·D ·

[
b11 b12
b21 b22

]−1
.

This is a bit of a shame, because diagonal matrices (for reasons discussed earlier) are
pretty fantastic: they’re easy to raise to large powers and calculate determinants of, and it
would have been nice if every linear transformation was diagonal in some basis. So: what
now? Do we simply assume that some matrices cannot be written in a “nice” form in any
basis, and that we should assume that operations like matrix exponentiation and finding
determinants is going to just be awful in many situations?

The answer, as you may have guessed by the fact that these notes have more pages after
this one, is no! In particular, while diagonalization1 might not always be possible, there is
something fairly close that is - the Schur decomposition.

Our goal for this week is to prove this, and study its applications. To do this, we need
one quick deus ex machina:

Theorem. Suppose that V is a n-dimensional vector space over C, and T is a linear
transformation from V → V . Then T has a complex-valued eigenvalue with corresponding
nontrivial eigenvector: i.e. there is some vector ~v 6= ~0 ∈ V such that T (~v) = λ~v.

If we find a basis B for V , and write T as a matrix over the basis B and ~v as a vector in
the base B, this is equivalent to the following theorem:

Theorem. Suppose that T is a complex-valued n×n matrix. Then T has a complex-valued
eigenvalue with corresponding nontrivial eigenvector: i.e. there is some vector ~v 6= ~0 ∈ Cn
such that T (~v) = λ~v.

We aren’t going to prove this theorem in this course, because it essentially boils down to a
very large theorem from complex analysis that is very far outside of the aim of this course:
the fundamental theorem of algebra2 Talk to me if you want to know how this works!

Instead, we’re going to study applications of this result:

1We say that a linear transformation is diagonalizable if it can be written as a diagonal matrix in some
basis.
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1 The Schur Decomposition

The Schur decomposition is the following result:

Theorem. (Schur decomposition): For any n × n matrix A with entries from C, there is
some orthonormal basis B of C and some upper-triangular3 matrix R with entries in C.

A =


...

...
~b1 . . . ~bn
...

...

 ·R ·


...
...

~b1 . . . ~bn
...

...


−1

.

In other words, for any n × n complex-valued matrix there is an orthonormal basis in
which that matrix is upper-triangular!

We prove this theorem here, provide an example of such a decomposition, and finally
use this decomposition to calculate something that would otherwise be fairly difficult!

First, the proof:

Proof. We proceed in four stages.

1. First, find an eigenvalue λ1 of A. We are guaranteed that some such λ1 exists, by our
earlier result.

2. Now, let Eλ denote the set of all vectors ~v such that A~v = λ~v. This is a subspace of
Cn, as linear combinations of vectors in this space are still in this space. Therefore,
it has an orthonormal basis! Pick some orthonormal basis ~b1λ1 , . . .

~bkλ1 for this space.

3. Now, extend this basis to an orthonormal basis for all of Cn! This is easy to do: one
by one, pick a vector not in the span of our basis, run Gram-Schmidt on that vector to
make it orthogonal to everything in our basis, and add in this new orthogonal vector
~ci to our basis. Do this until we have n vectors in our basis, at which point we have
an orthonormal basis for Cn.

4. Now, write our matrix A in the orthonormal basis { ~b1λ1 , . . . ~bk1λ1 , ~c1, . . . ~cn−k1}. What

does this look like? Well: we know that for each ~biλ1 , by definition, we have A ~biλ1 =

λ1 ~biλ1 , which in our orthonormal basis is the vector with i-th entry λ1 and the rest 0.
In other words, we know the first k columns of our matrix! In particular, our matrix

Theorem. (The Fundamental Theorem of Algebra) If f(x) is a nonconstant polynomial with coefficients
from some field F , with F = R or C, then it has a root in C. In other words, every nonconstant polynomial
f(x) has some corresponding value r ∈ C such that f(r) = 0.

3A matrix is called upper-triangular if all of its entries below the main diagonal are 0. For example,1 2 3
0 3 2
0 0 1

 is upper-triangular.
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has the following form:

AB =



k1 entries︷ ︸︸ ︷
λ1

n-k1 entries︷ ︸︸ ︷
. . . Arem

λ1

0 A2



 k1 entries

n− k1 entries

To be specific: the above matrix consists of four distinct “blocks:”

(a) a k1 × k1 diagonal matrix in the upper-left, with λ on its diagonal and 0’s else-
where,

(b) a n− k1 × k1 matrix in the lower-left made entirely of 0’s,

(c) a k1 × n− k1 matrix in the uppper-right corner, which we name Arem, and

(d) a n− k1 × n− k1 matrix in the lower-right corner, which we name A2.

5. Consider the matrix A2. This is, by definition, a linear map that takes in vectors from
the span of the set {~c1, . . . ~cn−k1} and outputs vectors within that same span! (Think
about why that is for a second. Persuade yourself that it is true.) In particular,
because A2 is now a square matrix over some vector space, we can take A2 and put
it back into steps 1-4 above! We can do this whenever this matrix A2 exists, which is
whenever n− k1 is nonzero.

6. What do we have now? Well: we have an orthonormal basis

{ ~b1λ1 , . . . ~bk1λ1 ,
~b1λ2 , . . .

~bk2λ2 ,
~c′1, . . . ~cn−k1−k2},

and have also shown that the matrix A written under the above basis has the form

AB =



k1 entries︷ ︸︸ ︷
λ1

k2 entries︷ ︸︸ ︷ n-k1 − k2 entries︷ ︸︸ ︷
. . . Arem1 Arem2

λ1
λ2

0
. . . Arem3

λ2

0 0 A3



 k1 entries

 k2 entries

n− k1 − k2 entries

7. Now, do it again to A3! In fact, keep repeating this process until we cannot continue.
What does our matrix under our resuting look like then? Well: we’ve filled its diagonal

with these diagonal

λi . . .

λi

 matrices, which have only 0’s below them. In other

words, our matrix is upper-triangular!
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So we’re done!

2 The Schur Decomposition: Why We Care

The above decomposition is incredibly useful in certain situations, like (as we often study)
raising a matrix to some large power! We study an example here:

Example. Consider the following matrix:

A =

13 8 8
−1 7 −2
−1 −2 7


What is A50?

Proof. We could calculate this directly, given enough computing time and power. However,
that seems...bad. How can we do this faster? Well: we might hope that we could do the
trick that we’ve used before, and write A in the form UDU−1, where D is a diagonal matrix!

That doesn’t work. In fact, there is no pair of matrices U , D, such that U is invertible

and D is diagonal, and A = UDU−1. (In this sense, A is like

[
1 1
0 1

]
, which we studied on

HW#2.
However, we can do something almost as good: find A’s Schur decomposition! We first

find this decomposition, and then talk about why it is useful for finding A50.
First, we try to find an eigenvalue with corresponing nontrivial eigenvector for A. We

do this, as always, by brute-force: if we have a vector (x, y, z) and constant λ such that

A =

13 8 8
−1 7 −2
−1 −2 7

 ·
xy
z

 =

13x+ 8y + 8z
−x+ 7y − 2z
−x− 2y + 7z

 = λ

xy
z


This gives us three linear equations, which we can solve:

13x+ 8y + 8z = λx,

−x+ 7y − 2z = λy,

−x− 2y + 7z = λz.

In particular, adding four copies of the second to the first gives us

9x+ 36y = λx+ 4λy ⇔ (9− λ)x = (4λ− 36)y.

Similarly, adding four copies of the third to the first gives us

9x+ 36z = λx+ 4λz ⇔ (9− λ)x = (4λ− 36)z.

Finally, subtracting the third from the second gives

9y − 9z = λy − λz ⇔ (9− λ)y = (9− λ)z.
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So: um, these three equations seem to be basically shouting “try setting λ = 9,” because
that satisfies all of our equations! If we do this, then all three of our equations simplify to
the same constraint, which is

x+ 2y + 2z = 0.

There are lots of solutions to this equation! One that comes to mind is (2,−2, 1). Checking
shows that this is indeed an eigenvector for the eigenvalue 9:

A =

13 8 8
−1 7 −2
−1 −2 7

 ·
 2
−2
1

 =

 18
−18

9


So: we have an eigenvalue! To find the Schur decomposition of A, we now need to find

all of the eigenvectors corresponding to the eigenvalue 9. As shown above, this is just the
space

E9 = {(x, y, z) | x+ 2y + 2z = 0}.

We want an orthonormal basis for this space. To do so, we first find a basis, and then use
Gram-Schmidt. The basis is easy enough: we know that (2,−2, 1) is in our space, and we
can also immediately see that (0, 1,−1) is also in our space, as it satisfies the constraint
x+ 2y+ 2z = 0. If we perform Gram-Schmidt on these two vectors, setting ~u1 = (2,−2, 1),
and

~u2 = (0, 1,−1)− proj((0, 1,−1) onto (2,−2, 1))

= (0, 1,−1)− (0, 1,−1) · (2,−2, 1)

(2,−2, 1) · (2,−2, 1)
(2,−2, 1)

= (0, 1,−1) +
3

9
(2,−2, 1)

=

(
2

3
,
1

3
,−2

3

)
.

Finally, we scale these vectors by their length to get a basis for E9 :
{(

2
3 ,−

2
3 ,

1
3

)
,
(
2
3 ,

1
3 ,−

2
3

)}
.

We now need to extend this to a basis for all of C3: to do this, we simply take some vector
not in the span of these two vectors, like (0, 0, 1) (check for yourself: why is this not in their
span?), and perform Gram-Schmidt on this third vector:

~u3 = (0, 0, 1)− proj

(
(0, 0, 1) onto

(
2

3
,−2

3
,
1

3

))
− proj

(
(0, 0, 1) onto

(
2

3
,
1

3
,−2

3

))
= (0, 0, 1)− 1/3

1

(
2

3
,−2

3
,
1

3

)
+

2/3

1

(
2

3
,
1

3
,−2

3

)
=

(
2

9
,
4

9
,
4

9

)
.

Scaling this vector by its length, which is
√

36/81 = 2
3 , gives us

(
1
3 ,

2
3 ,

2
3

)
. So we have an

orthonormal basis

B =

{
~b1,λ =

(
2

3
,−2

3
,
1

3

)
, ~b2,λ

(
2

3
,
1

3
,−2

3

)
,~c =

(
1

3
,
2

3
,
2

3

)}
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Now we need to write our matrix A in the basis B. To do this, simply note that because
~b1,λ, ~b2,λ are both eigenvectors for the eigenvalue λ = 9, we know exactly where A sends

these vectors: specifically, we have A ~b1,λ = 9 ~b1,λ = (9, 0, 0)B, and A ~b2,λ = 9 ~b2,λ = (0, 9, 0)B.
Finally, we can just calculate what A does to ~c:13 8 8

−1 7 −2
−1 −2 7

 ·
1/3

2/3
2/3

 =

15
3
3

 = 9( ~b1,λ + ~b2,λ + ~c) = (9, 9, 9)B.

Therefore, our matrix A under the basis B is just the matrix with these three vectors
as its columns: i.e.

AB =

9 0 9
0 9 9
0 0 9


B

.

In other words, under the orthonormal basis we’ve found, A is upper-triangular! (We were
lucky here and only had to go one step along the Schur process to get an upper-triangular
matrix. However, if the lower-right-hand block was bigger — if we were looking at a 4× 4
matrix, say —we might have had to repeat this process of finding an eigenvalue, extending
it to a basis of the relevant space, etc. on the lower block.)

So: how can we use this to raise A to a large power? Well: notice that if we write

A50
B =

9 0 0
0 9 0
0 0 9


B

+

0 0 9
0 0 9
0 0 0


B

50

,

we can use the binomial theorem to write this as the following sum:9 0 0
0 9 0
0 0 9

50

B

+

(
50

1

)9 0 0
0 9 0
0 0 9

49

B

0 0 9
0 0 9
0 0 0

1

B

+

(
50

2

)9 0 0
0 9 0
0 0 9

48

B

0 0 9
0 0 9
0 0 0

2

B

+ . . .+

(
50

49

)9 0 0
0 9 0
0 0 9

1

B

0 0 9
0 0 9
0 0 0

49

B

+

0 0 9
0 0 9
0 0 0

50

B.

Cool observation: 0 0 9
0 0 9
0 0 0

2

B

= the all-zeroes matrix!

This lets us simplify the above dramatically! In particular, every term with a

0 0 9
0 0 9
0 0 0

k
B

goes away for k ≥ 2; so we have
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A50
B =

9 0 0
0 9 0
0 0 9

50

B

+

(
50

1

)9 0 0
0 9 0
0 0 9

49

B

0 0 9
0 0 9
0 0 0


B

=

9 0 0
0 9 0
0 0 9

50

B

+ 50

9 0 0
0 9 0
0 0 9

49

B

0 0 9
0 0 9
0 0 0


B

=

950 0 0
0 950 0
0 0 950


B

+

50 · 949 0 0
0 50 · 949 0
0 0 50 · 949


B

0 0 9
0 0 9
0 0 0


B

=

950 0 0
0 950 0
0 0 950


B

+

0 0 50 · 950
0 0 50 · 950
0 0 0


B

=

950 0 50 · 950
0 950 50 · 950
0 0 950


B.

If we convert back to the standard basis, we have

A =

 2
3

2
3

1
3

−2
3

1
3

2
3

1
3 −2

3
2
3

 ·
950 0 50 · 950

0 950 50 · 950
0 0 950


B

·

2
3 −2

3
1
3

2
3

1
3 −2

3
1
3

2
3

2
3


= 949 ·

209 400 400
−50 −91 −100
−50 −100 −91

 .
Solution! With relatively little work, as compared to calculating A50 by hand!

3 The Schur Decomposition: How People Actually Find It

It bears noting that in practice, people don’t use repeated Gram-Schmidt to find this Schur
decomposition! Instead, they use the following absolutely beautiful application of the QR-
decomposition to find the Schur decomposition:

Theorem. (Francis 1961, Kublanovskaja 1962, Huang and Tam 2005): Take some n × n
matrix A with entries in C. Suppose that A has n distinct eigenvalues, and the Schur
decomposition QTs RsQs. Consider the following process:

1. Set A1 = A.

2. Find a QR-decomposition Q1R1 of A.

3. Define A2 = R1Q1.

4. Now, find a QR-decomposition Q2R2 of A2.
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5. Repeat this process! I.e. if Ak has the QR-decomposition QkRk, use this to define
Ak+1 = RkQk.

Notice that because

Ak+1 = RkQk = QTk (QkRk)Qk = (QkRk)in the basis QT
k
,

the eigenvalues of Ak and Ak+1 don’t change.
Furthermore, the following very surprising fact holds: if we look at the sequenceA1, A2, A3, . . .,

the diagonals of these matrices converge to the eigenvalues of A! In fact, in many situa-
tions we actually have something stronger: the sequence of the Ai’s will converge to Rs,
the upper-triangular part of the Schur decomposition! In other words, we often have the
following result:

lim
n→∞

An = Rs.

A proof of this is beyond this course, but it’s cool to know about this theorem nonetheless!
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