
Math 108B Professor: Padraic Bartlett

Lecture 4: Applications of Orthogonality: QR Decompositions

Week 4 UCSB 2014

In our last class, we described the following method for creating orthonormal bases,
known as the Gram-Schmidt method:

Theorem. Suppose that V is a k-dimensional space with a basis B = {~b1, . . . ~bk}.
The following process (called the Gram-Schmidt process) creates an orthonormal basis

for V :

1. First, create the following vectors {~v1, . . . ~vk}:

• ~u1 = ~b1.

• ~u2 = ~b2 − proj(~b2 onto ~u1).

• ~u3 = ~b3 − proj(~b3 onto ~u1)− proj(~b3 onto ~u2).

• ~u4 = ~b4 − proj(~b4 onto ~u1)− proj(~b4 onto ~u2)− proj(~b4 onto ~u3).

...

• ~uk = ~bk − proj(~bk onto ~u1)− . . .− proj(~bk onto ~uk−1).

2. Now, take each of the vectors ~ui, and rescale them so that they are unit length: i.e.
redefine each ~ui as the rescaled vector ~ui

|| ~ui|| .

In this class, I want to talk about a useful application of the Gram-Schmidt method:
the QR decomposition! We define this here:

1 The QR decomposition

Definition. We say that an n×n matrix Q is orthogonal if its columns form an orthonor-
mal basis for Rn.

As a side note: we’ve studied these matrices before! In class on Friday, we proved that for
any such matrix, the relation

QT ·Q = I

held; to see this, we just looked at the (i, j)-th entry of the product QT · Q, which by
definition was the i-th row of QT dotted with the j-th column of A. The fact that Q’s
columns formed an orthonormal basis was enough to tell us that this product must be the
identity matrix, as claimed.

1

Definition. A QR-decomposition of an n× n matrix A is an orthogonal matrix Q and
an upper-triangular1 matrix R, such that

A = QR.

Theorem. Every invertible matrix has a QR-decomposition, where R is invertible.

Proof. We prove this using the Gram-Schmidt process! Specifically, consider the following
process: take the columns ~ac1 , . . . ~acn of A. Because A is invertible, its columns are linearly
independent, and thus form a basis for Rn. Therefore, running the Gram-Schmidt process
on them will create an orthonormal basis for Rn! Do this here: i.e. set

• ~u1 = ~ac1 .

• ~u2 = ~ac2 − proj(~ac2 onto ~u1).

• ~u3 = ~ac3 − proj(~ac3 onto ~u1)− proj(~ac3 onto ~u2).

• ~u4 = ~ac4 − proj(~ac4 onto ~u1)− proj(~ac4 onto ~u2)− proj(~ac4 onto ~u3).

...

• ~un = ~acn − proj(~acn onto ~u1)− . . .− proj(~acn onto ~un−1).

Skip the rescaling step for a second. If we take these equations and solve them for the
columns ~aci of A, we get

• ~ac1 = ~u1.

• ~ac2 = ~u2 + proj(~ac2 onto ~u1).

• ~ac3 = ~u3 + proj(~ac3 onto ~u1) + proj(~ac3 onto ~u2).

• ~ac4 = ~u4 + proj(~ac4 onto ~u1) + proj(~ac4 onto ~u2) + proj(~ac4 onto ~u3).

...

• ~acn = ~un + proj(~acn onto ~u1) + . . . + proj(~acn onto ~un−1).

Now, notice that all of the proj(~aci onto ~uj)-terms are actually, by defintion, just multiples
of the vector ~uj . To make this more obvious, we could replace each of these terms with what

they are precisely defined to be, i.e.
~aci · ~uj

|| ~u1||2 ~uj . However, that takes up a lot of space! Instead,

for shorthand’s sake, denote the constant
~aci · ~uj

|| ~u1||2 as pci,j . Then, we have the following:

• ~ac1 = ~u1.

1A matrix is called upper-triangular if all of its entries below the main diagonal are 0. For example,1 2 3
0 3 2
0 0 1

 is upper-triangular.

2

• ~ac2 = ~u2 + pc2,1 ~u1.

• ~ac3 = ~u3 + pc3,1 ~u1 + pc3,2 ~u2.

• ~ac4 = ~u4 + pc4,1 ~u1 + pc4,2 ~u2 + pc4,3 ~u3.

...

• ~acn = ~un + pc2,1 ~u1 + . . . + pc2,n−1 ~un−1.

If we do this, then it is not too hard to see that we actually have the following identity:

...
...

...
...

...
...

...
...

~u1 ~u2 ~u3 . . . ~un
...

...
...

...
...

...
...

...


·


1 pc2,1 pc3,1 . . . pcn,1
0 1 pc3,2 . . . pcn,2
0 0 1 . . . pcn,3
...

...
...

. . .
...

0 0 0 . . . 1



=



...
...

...
...

...
...

...
...

~u1 (~u2 + pc2,1 ~u1) (~u3 + pc3,2 ~u2 + pc3,1 ~u1) . . .
(
~un +

∑n−1
i=1 pcn,i ~ui

)
...

...
...

...
...

...
...

...


= A.

In other words, we have a QR-decomposition!
Well, almost. The left-hand matrix’s rows form an orthogonal basis for Rn, but they

are not yet all length 1. To fix this, simply scale the left matrix’s columns so that they’re
all length 1, and then increase the scaling on the right-hand matrix’s rows so that it cancels
out: i.e.

...
...

...
...

...
...

...
...

~u1
|| ~u1||

~u2
|| ~u2||

~u3
|| ~u3|| . . . ~un

|| ~un||
...

...
...

...
...

...
...

...


·


|| ~u1|| pc2,1 · || ~u1|| pc3,1 · || ~u1|| . . . pcn,1 · || ~u1||

0 || ~u2|| pc3,2 · || ~u2|| . . . pcn,2 · || ~u2||
0 0 || ~u3|| . . . pcn,3 · || ~u3||
...

...
...

. . .
...

0 0 0 . . . || ~un||



=



...
...

...
...

...
...

...
...

~u1 (~u2 + pc2,1 ~u1) (~u3 + pc3,2 ~u2 + pc3,1 ~u1) . . .
(
~un +

∑n−1
i=1 pcn,i ~ui

)
...

...
...

...
...

...
...

...


= A.

A QR-decomposition!

3

As a side note, it bears mentioning that this result holds even if the matrix is not
invertible:

Theorem. Every matrix has a QR-decomposition, though R may not always be invertible.

The proof is pretty much exactly the same as above, except you have to be careful when
dealing with the ||~ui||’s, as you might be dividing by zero in the situations where A’s columns
were linearly dependent. On your own, try to think about what you’d need to change in
the above proof to make it work for a general matrix!

Instead, I want to focus on why this decomposition is nice: solving systems of linear
equations!

2 Applications of QR decompositions: Solving Systems of
Linear Equations

Suppose you have an invertible matrix A and vector ~b. Consider the task of a vector ~v such
that

A~v = ~b;

in other words, solving the system of n linear equations ari · ~v = bi, i = 1 . . . n. This is
typically a doable if slightly tedious task, via Gaussian elimination (i.e. pivoting on entries
in A.) However it takes time, and (from the perspective of implementing on a computer)
can be fairly sensitive to small changes or errors: i.e. if you’re pivoting on an entry in A
that is nearly zero, it is easy for small rounding errors in a computer program to suddenly
cause very big changes in what the entries in your matrix should be!

However, suppose that we have a QR decomposition for A: i.e. we can write A = QR,
for some upper-triangular R and orthogonal Q. Then, solving

QR~v = ~b

is the same task as solving

QTQR~v = R~v = QT~b;

and this is suddenly much easier!
In particular, because R is upper-triangular, R~v is just

r1,1v1 + r1,2v2 + r1,3v3 + . . . + r1,nvn
r2,2v2 + r2,3v3 + . . . + r2,nvn

...
rn−1,n−1vn−1 + rn−1,nvn

rn,nvn

 .

And finding values of this to set equal to some fixed vector QT~b is really easy! In particular,
the last coordinate of R~v just has one variable vn, so it’s easy to solve for that variable.
From here, the second coordinate of R~v has just two variables, vn−1, vn, one of which we

4

know now! So it’s equally easy to solve for vn−1. Working our way up, we have the same
situation for each variable: we never have to do any “work” to solve for the variables vi!

To illustrate this, we work an example:

Example. Consider the matrix

A =


2 1 3 3
2 1 −1 1
2 −1 3 −3
2 −1 −1 −1


.

First, find its QR decomposition. Then, use that QR decomposition to find a vector A such
that

A · ~v =


1
2
0
1


.

Answer. We start by performing Gram-Schmidt on the columns of A:

~u1 = ~ac1 = (2, 2, 2, 2).

~u2 = ~ac2 − proj(~ac2 onto ~u1)

= (1, 1,−1,−1)− (1, 1,−1,−1) · (2, 2, 2, 2)

(2, 2, 2, 2) · (2, 2, 2, 2)
(2, 2, 2, 2)

= (1, 1,−1,−1)− 0

= (1, 1,−1,−1).

~u3 = ~ac3 − proj(~ac3 onto ~u1)− proj(~ac3 onto ~u2)

= (3,−1, 3,−1)− (3,−1, 3,−1) · (2, 2, 2, 2)

(2, 2, 2, 2) · (2, 2, 2, 2)
(2, 2, 2, 2)− (3,−1, 3,−1) · (1, 1,−1,−1)

(1, 1,−1,−1) · (1, 1,−1,−1)
(1, 1,−1,−1)

= (3,−1, 3,−1)− 8

16
(2, 2, 2, 2)− 0

= (2,−2, 2,−2).

~u4 = ~ac4 − proj(~ac4 onto ~u1)− proj(~ac4 onto ~u2)− proj(~ac4 onto ~u3)

= (3, 1,−3,−1)− (3, 1,−3,−1) · (2, 2, 2, 2)

(2, 2, 2, 2) · (2, 2, 2, 2)
(2, 2, 2, 2)− (3, 1,−3,−1) · (1, 1,−1,−1)

(1, 1,−1,−1) · (1, 1,−1,−1)
(1, 1,−1,−1)

− (3, 1,−3,−1) · (2,−2, 2,−2)

(2,−2, 2,−2) · (2,−2, 2,−2)
(2,−2, 2,−2)

= (3, 1,−3,−1)− 0− 8

4
(1, 1,−1,−1)− 0

= (1,−1,−1, 1).

Using these four vectors, we construct a QR-decomposition as described earlier. Notice that

we’ve already calculated the
~aci · ~uj

|| ~u1||2 ~uj = pci,j ’s above, and so we don’t need to repeat our

5

work here:

...
...

...
...

...
...

...
...

~u1
|| ~u1||

~u2
|| ~u1||

~u3
|| ~u1||

~u4
|| ~u4||

...
...

...
...

...
...

...
...


·


|| ~u1|| pc2,1 · || ~u1|| pc3,1 · || ~u1|| pc4,1 · || ~u1||

0 || ~u2|| pc3,2 · || ~u2|| pc4,2 · || ~u2||
0 0 || ~u3|| pc4,3 · || ~u3||
0 0 0 || ~u4||



=
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ·


4 0 2 0
0 2 0 4
0 0 4 0
0 0 0 2


.

From here, to solve the equation A~v = (1, 2, 0, 1), we can use our QR-decomposition to
write QR~v = (1, 2, 0, 1), or equivalently R~v = QT (1, 2, 0, 1). We find the right-hand-side
here:

1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


T

·


1
2
0
1

 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ·


1
2
0
1

 =


2
1
−1
0

 .

So: we have the simple problem of finding ~v = (v1, v2, v3, v4) such that
4 0 2 0
0 2 0 4
0 0 4 0
0 0 0 2

 ·

v1
v2
v3
v4

 =


2
1
−1
0

 .

Ordering from bottom to top, this problem is just the task of solving the four linear equations

2v4 = 0

4v3 = −1

2v2 + 4v4 = 1

4v1 + 2v3 = 2.

If we solve from the top down, this is trivial: we get v4 = 0, v3 = −1/4, v2 = 1/2, and
v1 = 5

8 . Thus, we’ve found a solution to our system of linear equations, and we’re done!

6

	The QR decomposition
	Applications of QR decompositions: Solving Systems of Linear Equations

