
Math 108B Professor: Padraic Bartlett

Lecture 3: Orthonormal Bases

Week 3 UCSB 2014

In our last class, we introduced the concept of “changing bases,” and talked about writ-
ing vectors and linear transformations in other bases. In the homework and in class, we saw
that in several situations this idea of “changing basis” could make a linear transformation
much easier to work with; in several cases, we saw that linear transformations under a
certain basis would become diagonal, which made tasks like raising them to large powers
far easier than these problems would be in the standard basis.

But how do we find these “nice” bases? What does it mean for a basis to be“nice?” In
this set of lectures, we will study one potential answer to this question: the concept of an
orthonormal basis.

1 Orthogonality

To start, we should define the notion of orthogonality. First, recall/remember the defini-
tion of the dot product:

Definition. Take two vectors (x1, . . . xn), (y1, . . . yn) ∈ Rn. Their dot product is simply
the sum

x1y1 + x2y2 + . . . xnyn.

Many of you have seen an alternate, geometric definition of the dot product:

Definition. Take two vectors (x1, . . . xn), (y1, . . . yn) ∈ Rn. Their dot product is the
product

||~x|| · ||~y|| cos(θ),

where θ is the angle between ~x and ~y, and ||~x|| denotes the length of the vector ~x, i.e. the
distance from (x1, . . . xn) to (0, . . . 0).

These two definitions are equivalent:

Theorem. Let ~x = (x1, x2, x3), ~y = (y1, y2, y3) be a pair of vectors in R3. Then the
algebraic interpretation of ~x · ~y, given by

x1y1 + x2y2 + . . . xnyn,

is equal to the geometric interpretation

||~x|| · ||~y|| cos(θ),

where θ is the angle between ~x and ~y.
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This is not a hard theorem to prove; it’s essentially a consequence of some basic trigonome-
try, and you should do it if you’re interested! Instead, I mostly want to mention it because
it lets us discuss the concept of orthogonality:

Definition. Two vectors ~v, ~w are called orthogonal if their dot product is 0.

Geometrically, we can interpret this as saying that two vectors are orthogonal whenever the
angle θ between them is such that cos(θ) = 0; i.e. that these two vectors meet at either a
90◦ or 270◦-degree (i.e. ±π/2 in radians) angle!

x

y

(1,3)

(3,-1)

Two orthogonal vectors. Note that their algebraic dot product 1 · 3 + 3 · (−1) is zero, and that the
angle between them is π/2.

That’s orthogonality! In our introduction to these notes, we said that the idea of
orthogonality was motivated by a desire to understand what makes a basis “useful.”
In the next section, we look at how orthogonality and bases interact:

2 An Orthonormal Basis: Definitions

Consider the following definition:

Definition. Suppose we have a basis B = {~b1, . . . ~bn} for some space Fn, where F is either
R or C. We will say that this basis is orthonormal if it satisfies the following two properties:

1. Orthogonality: if we take any ~bi, ~bj with i 6= j, then ~bi and ~bj are orthogonal: i.e.
their dot product is 0.

2. Unit length: the length ||~bi|| of any vector ~bi is 1.

This is a kind of basis! Basically, it’s the best kind of basis, for the following reason:
suppose that B = {~b1, . . . ~bn} is an orthonormal basis for Fn. As discussed last week, we
know that

A =


...

...
~b1 . . . ~bn
...

...
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is the matrix that converts vectors written in the basis B into vectors written in the standard
basis, and

A−1 =


...

...
~b1 . . . ~bn
...

...


−1

is the matrix that converts vectors in the standard basis to vectors in the basis B. Then
we have the following result:

Proposition. A−1 is precisely AT , the transpose1 of A! In other words,

A−1 =

. . . ~b1 . . .
...

. . . ~bn . . .

 ,
the matrix whose rows are given by the vectors of B.

Proof. Just check the answer by multiplying these two matrices together! In other words,
just look at

AT ·A =

. . . ~b1 . . .
...

. . . ~bn . . .

 ·


...
...

~b1 . . . ~bn
...

...

 .
To get the entries of the product of these two matrices, we just take the dot product of a
row of the first matrix with a column of the second matrix. For the two matrices at hand,
this means that the entry in (i, j) of the product is just

~bi · ~bj .

But we know these dot products! In particular, we know that the basis B is orthonormal:
therefore, whenever i 6= j, this dot product is 0, because these two vectors are orthogonal.
As well, when i = j, our dot product is just

~bi · ~bi = bi,1 · bi,1 + bi,2 · bi,2 + . . .+ bi,n · bi,n =
(√

b2i,1 + . . .+ b2i,n

)2
= 12 = 1,

because the length
√
b2i,1 + . . .+ b2i,n of each vector ~bi is precisely 1.

In other words, we’ve just shown that the product of AT and A is the matrix where
(i, j) = 0 whenever i 6= j and (i, j) = 1 if i = j; i.e. it’s the identity matrix! In other words,
by definition we have that AT is the inverse of A, as multiplying A by AT yields the identity
matrix.

1Given a m×n matrix A, the transpose AT of A is the n×m matrix that you get by “flipping” A over its

main diagonal: i.e. by setting entry (i, j) of AT to be aj,i. For example, the transpose of

[
2 3
1 4

]
is

[
2 1
3 4

]
.
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Why do we care about this result? Well: it lets us effectively calculate the matrix
that transforms standard-basis vectors into basis-B vectors for free! Normally, we have to
explicitly find the inverse of this matrix, which is computationally expensive and difficult.

For this nice basis, however, you just have to find the transpose of


...

...
~b1 . . . ~bn
...

...

, which is

really easy!

3 An Orthonormal Basis: Examples

Before we do more theory, we first give a quick example of two orthonormal bases, along
with their change-of-basis matrices.

Example. One trivial example of an orthonormal basis is the standard basis! In other
words, look at the basis E = {~e1 = (1, 0, 0, . . . 0), . . . ~en = (0, . . . 0, 1)}. Everything in this
basis trivially has length 1 and is orthogonal.

Example. Here are four vectors that form an orthonormal basis for R4:

H =

{(
1

2
,
1

2
,
1

2
,
1

2

)
,

(
1

2
,
1

2
,−1

2
,−1

2

)
,

(
1

2
,−1

2
,−1

2
,
1

2

)
,

(
1

2
,−1

2
,
1

2
,−1

2

)
,

}
.

To see that they are all mutually orthogonal, it helps to factor out a 1
2 from these four

vectors:

H =

{
1

2
(1, 1, 1, 1),

1

2
(1,−1, 1,−1),

1

2
(1,−1,−1, 1),

1

2
(1, 1,−1,−1)

}
.

You are invited to check that these four vectors are all orthogonal and have unit length,
and thus form an orthonormal basis! The vector that converts vectors from the basis H to
the standard basis is just the matrix with these vectors as its columns:

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

1
2

1
2

1
2 −1

2 −1
2

1
2 −1

2
1
2 −1

2


.

By using our proposition, we can write the matrix that converts vectors from the standard
basis into the basis H as just the transpose of the above matrix:

1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2
1
2 −1

2 −1
2

1
2

1
2

1
2 −1

2 −1
2


.

(This orthonormal basis has some nice properties, that students from last quarter will
recognize: it’s a collection of vectors such that (1) every entry in every vector has the same

4



absolute value, and (2) they’re all orthogonal! In general, finding such sets of vectors is an
open problem in mathematics, with a number of applications. It is conjectured that for any
n, we can find a basis for R4n consisting of such vectors; thus far, we only know this up to
n = 167! So, um, fun extra-extra credit problem: find one of these bases?)

Excellent! We have now carefully defined the concept of an orthonormal basis, looked
at some examples of orthonormal bases, and proven a theorem that explains part of why
they are useful to us!

This leaves one immediately obvious question to study: how can we make more?

4 Turning Bases Into Orthonormal Bases: Projection

Specifically, let’s consider the following question:

Question 1. Suppose that we have some k-dimensional vector space V ; for example, we
could have V = Rk, or V = {(x1, . . . xk+1) : x1 + . . . xk+1}, which you can show is a
k-dimensional subspace of Rk+1. V can be lots of things.

Can we always find an orthonormal basis OB for V , no matter what V is?

The answer to this is . . . not obvious at all! So, we do what mathematicians always do
when presented with a difficult problem: look at special cases! Specifically, let’s consider
the simpler case where k = 2, i.e we’re dealing with a two-dimensional space V :

Question 2. Suppose that we have vector space V that’s two-dimensional: i.e. it has a
basis B = {~b1, ~b2} for a space V . Can we find a new, orthonormal basis OB for V ?

Answer. First, make the following definition:

Definition. Let ~v, ~w be a pair of vectors in Rn. The projection of ~v onto ~w, denoted
proj(~v onto ~w), is the following vector:

• Take the vector ~w.

• Draw a line perpendicular to the vector ~w, that goes through the point ~v and intersects
the line spanned by the vector ~w.

• proj(~v onto ~w) is precisely the point at which this perpendicular line intersects ~w.

We illustrate this below:

w
v

proj(v	onto	w)θ
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In particular, it bears noting that this vector is a multiple of ~w.

A formula for this vector is the following:

proj(~v onto ~w) =
~v · ~w
||~w||2

· ~w.

To see why, simply note that the vector we want is, by looking at the above picture,
something of length cos(θ) · ||~v||, in the direction of ~w. In other words,

proj(~v onto ~w) = cos(θ) · ||~v|| · ~w

||~w||
.

Now, use the angle form of the dot product to see that because ~w · ~v = ||~w||||~v|| cos(θ), we
have

proj(~v onto ~w) =
~v · ~w
||~v||||~w||

||~v|| ~w

||~w||
.

Canceling the ||~v||’s gives us the desired formula.
Using this, you can define the “orthogonal part” of ~v over ~w in a similar fashion:

Definition. Let ~v, ~w be a pair of vectors in Rn. The orthogonal part of ~v over ~w, denoted
orth(~v onto ~w), is the following vector:

orth(~v over ~w) = ~v − proj(~v onto ~w)

It bears noting that this vector lives up to its name, and is in fact orthogonal to ~w. This
is not hard to see: just take the dot product of ~w with it! This yields

~w · (~v − proj(~v onto ~w)) = ~w · ~v − ~w · proj(~v onto ~w)

= ~w · ~v − ~w · ( ~v · ~w
||~w||2

· ~w)

= ~w · ~v − ~v · ~w
||~w||2

(~w · ~w)

= ~w · ~v − ~v · ~w
||~w||2

(w2
1 + . . . w2

n)

= ~w · ~v − ~v · ~w
||~w||2

(||~w||2)

= 0.

As is often the case, actually drawing the vectors orth(~v over ~w) and ~w makes this proof
much more believable:

w
v

proj(v	onto	w)θ
orth(v	onto	w)
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We can now answer the question that we asked at the start of this section! Specifically:
suppose that B = {~b1, ~b2} is some basis for a two-dimensional space V .

We can make a new basis OB for V as follows:

1. Define the first basis vector ~r1
′ of OB as just ~b1.

2. Now, set ~r2
′ =orth(~b2 over ~r1). By our work above, this vector is orthogonal to ~r1

′.

3. Finally, define ~r1 = ~r1
′/||~r1′||, ~r2 = ~r2

′/||~r2′||. By construction, these vectors are just
the vectors from (1) and (2), except scaled to be length 1.

Therefore, the set OB is made of orthonormal vectors! We just need to show that it is
an orthonormal basis for V , and we’re done! This is not hard to do: we just need to show
that (1) OB spans V , and (2) that OB is not linearly dependent.

For (2): we will prove that in general, a set of k mutually orthogonal nonzero vectors
{~r1, . . . ~rk} is linearly independent. To see this, consider any linear combination of the
orthogonal vectors that combines to ~0:

a1 ~r1 + . . . ak ~rk = ~0.

Take any ~ri, and multiply the left- and right-hand-sides by ~ri. Because ~ri, ~rj are orthogonal
whenever i 6= j, the left-hand-side simplifies to ai~ri · ~ri = ai · ||~ri||2, while the right-hand-side
is just 0. We know that because ~ri is nonzero, its length is also nonzero: therefore we can
divide both sides by ||~ri||2, and get that ai = 0. This holds for every i!

Therefore, we have proven that the only way to combine the vectors {~r1, . . . ~rk} to get
~0 is to use the trivial linear combination where we multiply all of these vectors by 0. This
is the definition of linear independence! So we’ve proven (2).

For (1): Look at the span of OB, i.e. the set of all linear combinations of elements of
OB. On one hand, because both ~r1, ~r2 are made out of linear combinations of the vectors
~b1, ~b2, the span of OB must be a subspace of V . On the other hand, the span of OB is
two-dimensional, because OB contains two vectors! Therefore, the span of OB is a two-
dimensional thing living in a two-dimensional space V : in other words, it is V .

So we’re done!

Here’s a quick example of how the above works in practice:

Example. Examine the space V spanned by the two vectors {(1, 2, 2), (0, 3, 6)}. Find an
orthonormal basis for V .

Answer. We proceed as in our example above. First, we set

~r1
′ = (1, 2, 2).

Then, we define ~r2
′ by

~r2
′ = (0, 3, 6)− proj ((0, 3, 6) onto (1, 2, 2))

= (0, 3, 6)− (0, 3, 6) · (1, 2, 2)

(1, 2, 2) · (1, 2, 2)
(1, 2, 2)

= (0, 3, 6)− 18

9
(1, 2, 2)

= (−2,−1, 2).
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Finally, we scale each by their length:

~r1 =
~r1
′

||~r1||
=

1√
12 + 22 + 22

(1, 2, 2) =

(
1

3
,
2

3
,
2

3

)
,

~r2 =
~r2
′

||~r2||
=

1√
(−2)2 + (−1)2 + 22

(−2,−1, 2) =

(
−2

3
,−1

3
,
2

3

)
.

An orthonormal basis for V !
You should verify for yourself that these two vectors are orthogonal, and that they can

be combined to create both (1, 2, 2) and (0, 3, 6) (and therefore span V .)

One more example:

Example. Examine the space V spanned by the two vectors {(2, 3, 6), (1, 0, 2)}. Find an
orthonormal basis for V .

Answer. We proceed as in our example above. First, we set

~r1
′ = (2, 3, 6).

Then, we define ~r2
′ by

~r2
′ = (1, 0, 2)− proj ((1, 0, 2) onto (2, 3, 6))

= (1, 0, 2)− (1, 0, 2) · (2, 3, 6)

(2, 3, 6) · (2, 3, 6)
(2, 3, 6)

= (1, 0, 2)− 14

49
(2, 3, 6)

= (
3

7
,−6

7
,
2

7
).

Finally, we scale each by their length:

~r1 =
~r1
′

||~r1||
=

1√
22 + 32 + 62

(2, 3, 6) =

(
2

7
,
3

7
,
6

7

)
,

~r2 =
~r2
′

||~r2||
=

1√
(3/7)2 + (−6/7)2 + (2/7)2

(
3

7
,−6

7
,
2

7
) = (

3

7
,−6

7
,
2

7
).

An orthonormal basis for V !

By thinking about how we did the proof above, we can actually get a way to answer our
generalized question! In other words, we can finally answer the following:

Question 3. Suppose that we have some k-dimensional vector space V ; for example, we
could have V = Rk, or V = {(x1, . . . xk+1) : x1 + . . . xk+1}, which you can show is a
k-dimensional subspace of Rk+1. V can be lots of things.

Can we always find an orthonormal basis OB for V , no matter what V is?
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Answer. We just generalize the process that we used in our work above. Suppose that V
is a k-dimensional space with a basis B = {~b1, . . . ~bk}.

Consider the following process (called the Gram-Schmidt process, formally), to create a
set of k nonzero orthogonal vectors { ~u1, . . . ~uk} out of combinations of the B-elements:

• ~u1 = ~b1.

• ~u2 = ~b2 − proj(~b2 onto ~u1).

• ~u3 = ~b3 − proj(~b3 onto ~u1)− proj(~b3 onto ~u2).

• ~u4 = ~b4 − proj(~b4 onto ~u1)− proj(~b4 onto ~u2)− proj(~b4 onto ~u3).

...

• ~uk = ~bk − proj(~bk onto ~u1)− . . .− proj(~bk onto ~uk−1).

We claim that for any n, the vector ~un is orthogonal to any ~um, with n > m, and prove
this via strong induction. For n = 1, our claim is trivially true, and for n = 2 our claim is
just the special case we studied earlier; so those are our base cases.

For the induction step: we assume that our claim holds for all ~ui, where 1 ≤ i ≤ n. We
seek to prove our claim for n+ 1: i.e. we want to show that

~un+1 = ~bn+1 − proj( ~bn+1 onto ~u1)− . . .− proj( ~bn+1 onto ~un)

is orthogonal to every ~uj , for j < n+ 1.
This is not hard to see — just pick any value of j, and calculate the dot product of ~un+1

and ~uj ! This is just

~un+1 · ~uj =
(
~bn+1 − proj( ~bn+1 onto ~u1)− . . .− proj( ~bn+1 onto ~un)

)
· ~uj

=
(
~bn+1 − proj( ~bn+1 onto ~uj)

)
· ~uj −

(
proj( ~bn+1 onto ~u1)

)
· ~uj

−
(

proj( ~bn+1 onto ~u2)
)
· ~uj

...

−
(

proj( ~bn+1 onto ~un)
)
· ~uj


(all ~ui 6= ~uj

′s).

On one hand, we know that the first term is just(
~bn+1 − proj( ~bn+1 onto ~uj)

)
· ~uj =

(
orth( ~bn+1 over ~uj

)
· ~uj ,

which is 0 by construction (as these two vectors are orthogonal.)
On the other hand, each of the other terms is of the form(

proj( ~bn+1 onto ~ui)
)
· ~uj = (some constant)~ui · ~uj ,
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for i 6= j and i, j ≤ n. We know that because i 6= j, we either have i > j or j > i, and
both are bounded above by n. Therefore, in any case, our inductive assumption tells us
that these two vectors ~ui, ~uj are orthogonal! Therefore, their dot product is also 0.

Thus, the entire dot product ~un+1 · ~uj is zero, and we have proven our inductive claim.
Consequently, we know that our claim holds for everything: i.e. the set { ~u1, . . . ~uk} is
a collection of nonzero orthogonal vectors, made only out of the elements of B! If we
divide each of these elements by their length, we get a collection of k unit-length mutually
orthogonal vectors made out of the elements of B.

As proven earlier, this set is linearly independent and made out of elements of B and
thus spans a k-dimensional subspace of V . But V is itself k-dimensional: so the span of
this set must be V itself! So we’ve found an orthonormal basis for V , as desired.

We run one quick example here:

Example. Run the above process on the space spanned by the vectors {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Proof. So: via the algorithm above, we define the vectors u1,u2,u3 as follows:

~u1 = (1, 1, 0),

~u2 = (1, 0, 1)− proj((1, 0, 1) onto (1, 1, 0))

= (1, 0, 1)− (1, 1, 0) · (1, 0, 1)

(1, 1, 0) · (1, 1, 0)
(1, 1, 0)

= (1, 0, 1)− 1

2
(1, 1, 0)

=

(
1

2
,−1

2
,
1

2

)
~u3 = (0, 1, 1)− proj((0, 1, 1) onto (1, 1, 0))− proj

(
(0, 1, 1) onto

(
1

2
,−1

2
,
1

2

))
= (0, 1, 1)− (1, 1, 0) · (0, 1, 1)

(1, 1, 0) · (1, 1, 0)
(1, 1, 0)−

(
1
2 ,−

1
2 ,

1
2

)
· (0, 1, 1)(

1
2 ,−

1
2 ,

1
2

)
·
(
1
2 ,−

1
2 ,

1
2

) (1

2
,−1

2
,
1

2

)
= (0, 1, 1)− 1

2
(1, 1, 0)− 0

(
1

2
,−1

2
,
1

2

)
= (0, 1, 1)−

(
1

2
,
1

2
, 0

)
=

(
−1

2
,
1

2
, 1

)
.

Fun fact: these are all now pairwise orthogonal! Our theorem tells us this directly, but
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we can double-check it to illustrate the idea:

(1, 1, 0) ·
(

1

2
,−1

2
,
1

2

)
= −1

2
+

1

2
= 0.

(1, 1, 0) ·
(
−1

2
,
1

2
, 1

)
= −1

2
+

1

2
= 0.(

1

2
,−1

2
,
1

2

)
·
(
−1

2
,
1

2
, 1

)
= −1

4
− 1

4
+

1

2
= 0.

Now, to finish up, we just scale each vector by its length:

~r1 =
~u1
|| ~u1||

=
1√

12 + 12 + 02
(1, 1, 0) =

(
1√
2
,

1√
2
, 0

)
,

~r2 =
~u2
|| ~u2||

=
1√

(−1/2)2 + (1/2)2 + 12

(
−1

2
,
1

2
, 1

)
=

(
−
√

6

6
,

√
6

6
,

√
6

3

)
,

~r3 =
~u3
|| ~u3||

=
1√

(1/2)2 + (−1/2)2 + (1/2)2

(
1

2
,−1

2
,
1

2

)
=

(√
3

3
,−
√

3

3
,

√
3

3

)
.

Done!
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