
Math 108a Professor: Padraic Bartlett

Lecture 9: Range and Null Space

Week 3 UCSB 2013

Today’s lecture is on the concepts of range and null space, a pair of concepts related
to the linear maps we’ve been studying recently. We define these two objects below:

1 Range and Null Space.

Definition. Pick two vector spaces U, V . Let T : U → V be a linear map from U to V .
The range of T is the following set:

range(T ) = {T (~u) | ~u ∈ U}

In other words, the range of a linear map is the collection of all possible outputs of T under
all possible inputs from U . Some people call this the image of T , and denote this im(T ).
Others will denote this as T (U), the idea being that you’ve put “all” of U into T itself.

Definition. Pick two vector spaces U, V . Let T : U → V be a linear map from U to V .
The null space of T is the following set:

null(T ) = {~u | T (~u) = ~0 ∈ V }

In other words, the null space of a linear map is the collection of all of the elements in U
that T maps to 0.

For example, consider the linear map T : R4 → R2,

T (w, x, y, z) = (0, 0).

For this map,

• The image of T is the set {(0, 0)}, because T outputs (0, 0) on every input.

• The null space of T is all of R4, because T sends every element of R4 to (0, 0).

Similarly, consider the map T : R4 → R, defined such that

T (x, y, z) = x+ y + z.

Thing you should do if you don’t believe it: show this is a linear map. Once you’ve done
this, then you can easily check the following:

• The image of T is all of R. This is because on input (a, 0, 0), for any real number
a, T outputs a + 0 + 0 = a. Therefore, we can get any real number as an output of
T . Because T ’s output is restricted to R, there’s nothing else to worry about getting;
consequently, the image of T is precisely T .
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• The null space of T is the collection of all triples (a, b, c) such that T (a, b, c) =
a+ b+ c = 0. In other words, if we solve for c in terms of the other two variables, it’s
the collection {(a, b,−a− b) : a, b ∈ R} of vectors in R3.

Fun fact: both of these objects are subspaces! We prove this here:

Theorem 1. The range of a linear map T : U → V is a subspace of V .

Proof. Let T : U → V be a linear map, and range(T ) denote the range of T : i.e.

range(T ) = {T (~u) | ~u ∈ U}

We want to show this is a subspace of the set it’s contained in, V .
To do this, we recall from week 1 that we simply need to check the following three

conditions:

• Closure(+): we need to take any two vectors ~x, ~y ∈ range(T ), and show that their
sum is in the range of T .

Doing this is not very hard. If ~x, ~y are both in the range of T , then by definition there
must be a pair of vectors ~a,~b such that T (~a) = ~x, T (~b) = ~y. Therefore, the vector
T (~a +~b) is also in the range of T , because it is something else that is an output of
T . But T (~a+~b) = T (~a) + T (~b) = ~x+ ~y. Therefore, given any two vectors ~x, ~y in the
range of T , their sum is also in the range of T .

• Closure(·): we need to take any vector ~x ∈ range(T ), and any scalar λ ∈ F , and
show that their product is in the range of T .

This is pretty easy, and similar to what we just did above. Again, because ~x is in the
range of T , there has to be some vector ~a such that T (~a) = ~x. Then, we have that
T (λ~a) must also be in the range of T , because it’s another possible output of T . But
T (λ~a) = λT (~a) = λ~x. Therefore, the range is closed under multiplication by scalars.

• Identity(+): Take any ~a ∈ U . Because U is a vector space, we know that −~u is
contained within U . We know that T (~a−~a) = T (~a)− T (~a) = ~0; therefore, ~0 is in the
range of T .

Theorem 2. The null space of a linear map T : U → V is a subspace of V .

Proof. Let T : U → V be a linear map, and null(T ) denote the null space of T : i.e.

null(T ) = {~u | T (~u) = ~0 ∈ V }

We want to show this is a subspace of the set it’s contained in, U .
To do this, we recall from week 1 that we simply need to check the following three

conditions:
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• Closure(+): we need to take any two vectors ~x, ~y ∈ null(T ), and show that their sum
is in the null space of T .

Doing this is easier than for the range! If ~x, ~y are both in the null space of T , then by
definition T (~x) = T (~y) = ~0. But then T (~x+~y) = T (~x)+T (~y) = ~0+~0 = ~0. Therefore,
given any two vectors ~x, ~y in the null space of T , their sum is also in the null space of
T .

• Closure(·): we need to take any vector ~x ∈ null(T ), and any scalar λ ∈ F , and show
that their product is in the null space of T .

This is also easy. Again, because ~x is in the null space of T , T (~x) = ~0. Then, we have
that T (λ~x) = λT (~x) = λ~0 = ~0. Therefore, the null space is closed under multiplication
by scalars.

• Identity(+): This is identical to the proof for range. Take any ~a ∈ U . Because U is
a vector space, we know that −~u is contained within U . We know that T (~a − ~a) =
T (~a)− T (~a) = ~0; therefore, ~a− ~a = ~0 is in the null space of T .

What I want to talk about here, briefly, is why we care about these objects. The
motivation for linear maps is perhaps not too hard to understand: whenever we have any
collection of objects in mathematics, one of the most natural things to study is functions
between these objects. If we want these maps to preserve the structure that we care about
with vector spaces — i.e. if we want our map to preserve the operations of vector addition
and scalar multiplication, because those are the only two things we can do with vectors —
we want this map to play nicely with addition and scalar multiplication, in pretty much
precisely the way we ask linear maps to do.

The reason for studying the range is not much harder to understand. If we care about
what some linear map T : U → V does, then we pretty clearly care about understanding
the range of possible outputs that T has; this is one of the more fundamental things we can
ask about T .

The null space is more obscure, but arguably the more important of the two. On one
hand, understanding the collection of all things that goes to 0 seems somewhat silly; why
do we care so much about 0? Why not any other value?

The reason for this comes from understanding how linear maps play with the null space.
For example, consider the map

T : R3 → R,

defined by

T (x, y, z) = x+ y.

The null space of this map is just the collection of all triples (x, y, z) such that

T (x, y, z) = 0;
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i.e. it’s the set

null(T ) = {(x,−x, z) : x, z ∈ R}.

So, here’s a related question. What does the set of all vectors that map to 1 look like?
Well, if we directly solve, we’re looking for all triples (x, y, z) such that

T (x, y, z) = 1;

i.e. it’s the set

{(1 + x,−x, z) : x, z ∈ R}.

In other words, it’s basically what happens if we take null(T ) and scale every element in it
by (1, 0, 0)!

Furthermore, if we take any real number a ∈ R. we can see that

T (x, y, z) = a

if and only if our triple has the form

(a+ x,−x, z),

for some x, z ∈ R.
So, in a sense, when we understood the null space of the linear map T above, for any a

we understood the collection of all elements that map to that a! So there’s nothing special
about 0, in a sense — rather, the null space appears to be capturing the total “redundancy”
of our map, i.e. the number of elements that our maps sends to any element!

We’ll study this phenomena more in later lectures.
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