
Math 108a Professor: Padraic Bartlett

Lecture 3: Vector Spaces

Week 1 UCSB 2013

The main reason we studied fields in our first lecture is not because we’re particularly
interested in the definitions and concepts of fields themselves. (Which is not to say that
fields are not interesting mathematical subjects; in fact, there is a remarkably large body
of mathematical work devoted to studying fields and related algebraic objects!)

Instead, the main reason we’re studying fields in a linear algebra class is because we
want to study something built out of fields: vector spaces.

1 Vector Spaces, Informally

The two vector spaces you’re probably the most used to working with, from either your
previous linear algebra classes or even your earliest geometry/precalc classes, are the spaces
R2 and R3. We briefly remind the reader about how these two vector spaces work here:

Definition. The vector space R2 consists of the collection of all pairs (a, b), where a, b are
allowed to be any pair of real numbers. For example, (2,−3), (2, π), (−1, 1), and (

√
2,
√

2)
are all examples of vectors in R2. We typically visualize these vectors as arrows in the
xy-plane, with the tail of the arrow starting at the origin1 and the tip of the arrow drawn at
the point in the plane with xy-coördinates given by the vector. We draw four such vectors
here:

x

y

(2,-3)

(2,π)

(-1,1) (√2,	√2)

Given a pair of vectors in R2, we can add them together. We do this component-wise,
i.e. if we have two vectors (a, b) and (c, d), their sum is the vector (a+c, b+d). For example,
the sum of the vectors (3,−2) and (2, 3) is the vector (5, 1).

You can visualize this by taking the arrow corresponding to the first vector that we add,
and “translating” this arrow over to the start of the second vector; if you travel along the

1The origin is the point (0, 0) in the plane.
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first vector and then continue along this second translated vector, you arrive at some point
in the plane. The arrow connecting the origin to this point is the vector given by the sum
of these two vectors! If this seems hard to understand, the diagram below may help some:

x

y

(3-2)

(2,3)

(2,3)+(3,-2)	=	(5,1)

We can also scale a vector in R2 by any real number a. Intuitively, this corresponds to
the concept of “stretching:” the vector (x, y) scaled by a, denoted a(x, y), is the quantity
(ax, ay). For example, 2(1, 3) = (2, 6), and is essentially what happens if we “double” the
vector (1, 3). We illustrate this below:

x

y

(1,3)

2(1,3)	=	(2,6)

We can define R3 in a similar fashion:

Definition. The vector space R3 consists of the collection of all pairs (a, b, c), where a, b, c
are allowed to be any triple of real numbers. For example, (0, 1, 2), (3, 0, 2), and (3, 2, 0)
are all examples of vectors in R3. We typically visualize these vectors as arrows in three-
dimensional xyz-space, with the tail of the arrow starting at the origin and the tip of the
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arrow drawn at the point in the plane with xyz-coördinates given by the vector. We draw
three such vectors here:

x y

z

(0,1,2)

(3,0,2)

(3,2,0)

Again, given a pair of vectors in R3, we can add them together. We do this component-
wise, i.e. if we have two vectors (a, b, c) and (d, e, f), their sum is the vector (a+d, b+e, c+f).
For example, the sum of the vectors (3,−2, 0) and (2, 1, 2) is the vector (5,−1, 2). We can
also scale a vector in R3 by any real number a: the vector (x, y, z) scaled by a, denoted
a(x, y, z), is the quantity (ax, ay, az). These operations can be visualized in a similar fashion
to the pictures we drew for R2:

x y

z

(-3,0,1)+(3,2,0)	

(-3,0,1)

(3,2,0)

=	(0,2,1)

=(4,0,2) (2,0,1)
2(2,0,1)	

You can generalize this discussion to Rn, the vector space made out of n-tuples of real
numbers: i.e. elements of R4 would be things like (π, 2, 2, 1) or (−1, 2, 1,−1).
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2 Vector Spaces, Formally

In general, there are many other kinds of vector spaces — essentially, anything with the
two operations “addition” and “scaling” is a vector space, provided that those operations
are well-behaved in certain specific ways. Much like we did with R and the field axioms, we
can generate a list of “properties” for a vector space that seem like characteristics that will
insure this “well-behaved” nature. We list a collection of such properties and use them to
define a vector space here:

Definition. A vector space V over a field F is a set V along with the two operations
addition and scalar multiplication, such that the following properties hold:

• Closure(+): ∀~v, ~w ∈ V, we have v +
w ∈ V .

• Identity(+): ∃~0 ∈ V such that ∀~v ∈
V , ~0 + ~v = ~v.

• Commutativity(+): ∀~v, ~w ∈ V,~v +
~w = ~w + ~v.

• Associativity(+): ∀~u,~v, ~w ∈ V, (~u +
~v) + ~w = ~u+ (~v + ~w).

• Inverses(+): ∀~v ∈ V,∃ some − ~v ∈
V such that ~v + (−~v) = 0.

• Closure(·): ∀a ∈ F,~v ∈ V, we have
a~v ∈ V .

• Identity(·): ∀~v ∈ V , we have 1~v = ~v.

• Compatibility(·): ∀a, b ∈ F , we have
a(b~v) = (a · b)~v.

• Distributivity(+, ·): ∀a ∈ F,~v, ~w ∈
V, a (~v + ~w) = a~v + a~w.

As with fields, there are certainly properties that Rn satisfies that are not listed above. For
example, consider the following property:

• New property?(+): The additive identity, ~0, is unique in any vector space. In other
words, there cannot be two distinct vectors that are both the additive identity for a
given vector space.

Just like before, this property turns out to be redundant: in other words, this property
is implied by the definition of a vector space! We prove this here:

Claim. In any vector space, the additive identity is unique.

Proof. Take any two elements ~0, ~0′ that are both additive identities. Then, by definition,
we know that because ~0 is an additive identity, we have

~0′ = ~0 + ~0′.

Similarly, because ~0′ is an additive identity, we have

~0 = ~0′ +~0.

If we use commutativity to switch the ~0 and ~0′, we can combine these two equalities to get
that

~0 = ~0′ +~0 = ~0 + ~0′ = ~0′.
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Therefore, we have shown that ~0 and ~0′ are equal. In other words, we’ve shown that all
of the elements that are additive identities are all equal: i.e. that they’re all the same
element! Therefore, this additive identity element is unique: there is no other element
that is somehow an additive identity that is different from ~0.

As we did with fields, there are a number of other properties that Rn possesses that you
can prove that any vector space must have: in your textbook, there are proofs that every
vector has a unique additive inverse, that 0~v is always ~0, that −1~v = −~v, and other such
things.

Instead of focusing on more of these proofs, we shift our attention instead to actually
describing some vector spaces!

A few of these are relatively simple to come up with:

• Rn, the example we used to come up with these properties, is a vector space over the
field R.

• Cn is similar. Specifically: Cn is the set of all n-tuples of complex numbers: i.e.

Cn = {(z1, . . . zn)|z1, . . . zn ∈ C}.

Just like with Rn, we can add these vectors together and scale them by arbitrary
complex numbers, while satisfying all of the vector space properties. We leave the
details for the reader to check, but this is a vector space over the complex numbers
C.

• Similarly, Qn, the set of all n-tuples of rational numbers

Qn = {(q1, . . . qn)|q1, . . . qn ∈ Q},

is a vector space over the field Q.

• In general, given any field F , we can form the vector space Fn by taking our set to be

Fn = {(f1, . . . fn)|f1, . . . fn ∈ F}.

We can add these vectors pairwise: i.e. for any ~f = (f1, . . . fn), ~g = (g1, . . . gn) ∈ Fn,
we can form

(f1, f2, . . . fn) + (g1, g2, . . . gn) = (f1 + g1, f2 + g2 + . . . fn + gn).

We can also scale them: for any ~f ∈ Fn, a ∈ F , we can form the vector

a(f1, f2, . . . fn) = (a · f1, a · f2, . . . a · fn).

It is not hard to check that because F is a field, Fn is forced to satisfy all of the vector
space axioms:

– Closure(+): Immediate. Because F is a field and is closed under addition, the
pairwise sums performed in vector addition must create another vector.
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– Identity(+): Because F is a field, it has an additive identity, 0. The vector
~0 = (0, 0, . . . 0) is consequently the additive identity for our vector space, as
pairwise adding this vector to any other vector does not change any of the other
vector’s coördinates.

– Commutativity(+): Again, this is a consequence of F being a vector space.
Because addition is commutative in F , the pairwise addition in our vector space
is commutative.

– Associativity(+): Once more, this is a consequence of F being a vector space.
Because addition is associative in F , the pairwise addition in our vector space is
associative.

– Inverses(+): Take any ~f = (f1, . . . fn) ∈ Fn. Because F is a field, we know
that (−f1, . . .− fn) is a vector in Fn as well. Furthermore, the pairwise addition
of these two vectors clearly yields the additive identity ~0; therefore, our vector
space has inverses.

– Closure(·): This is a consequence of F being closed under multiplication.

– Identity(·): Because F is a field, it has a multiplicative identity 1. This 1, when
used to scale a vector, does not change that vector at any coördinate because of
this multiplicative identity property; therefore 1 is also the scalar multiplicative
identity for our vector space.

– Compatibility(·): This is an immediate consequence from F ’s multiplication
being associative, as for any a, b ∈ F , we have

a(b(f1 . . . fn) =a(b · f1, . . . b · fn) = (a · (b · f1), . . . a · (b · fn))

=(a · b) · f1, . . . (a · b) · fn) = (a · b)(f1, . . . fn).

– Distributivity(+, ·): This is a consequence of F being a vector space. Because
multiplication and addition are distributive in F , their combination in our vector
space is distributive as well.

• A specific consequence of the above result is that something like (Z/5Z)n is a vector
space. This is a somewhat strange-looking beast: it’s a vector space over a finite-sized
field! In particular, it’s a vector space with only finitely many elements, which is
weird.

To understand this better, we look at some examples. Consider (Z/5Z)2. This is the
vector space consisting of elements of the form

(a, b),

where a, b ∈ {0, 1, 2, 3, 4}. We add and scale elements in this vector space using mod-5
modular arithmetic: for example,

(2, 3) + (4, 4) = (1, 2),

because 2 + 4 ≡ 1 mod 5 and 3 + 4 ≡ 2 mod 5. Similarly,

2(3, 1) = (1, 2),
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because 2 · 3 ≡ 1 mod 5 and 2 · 1 ≡ 2 mod 5.

Perhaps surprisingly, these odd-looking vector spaces are some of the most-commonly
used spaces in the theoretical computer science/cryptographic settings. In particular,
they come up very often in the field of elliptic curve cryptography, and are instru-
mental to how a number of modern cryptographic schemes work.

There are some odder examples of vector spaces:

• Polynomials! Specifically, let R[x] denote the collection of all finite-degree polynomials
in one variable x with real-valued coefficients. In other words,

R[x] = {a0 + a1x+ . . . anx
n|a0, . . . an ∈ R, n ∈ N}.

Verifying that this is a vector space is not very difficult:

– Closure(+): Adding two polynomials together clearly gives us another polyno-
mial.

– Identity(+): Adding 0 to any polynomial doesn’t change it, and 0 is a polyno-
mial itself (simply pick a0 = 0 and n = 0.)

– Commutativity(+): We can add polynomials in any order that we want, and
we’ll always get the same answer. (This is because addition in R is commutative,
and we just add polynomials by grouping common powers of x and adding their
real-valued coefficients together!)

– Associativity(+): Holds for the precise same reason that commutativity holds.

– Inverses(+): Given any polynomial a0 + . . . anx
n, the polynomial −a0 + . . . −

anx
n is its additive inverse, as summing these two polynomials gives us 0.

– Closure(·): Multiplying a polynomial by a real number clearly gives us another
polynomial.

– Identity(·): Multiplying a polynomial by 1 clearly gives us the same polynomial
back.

– Distributivity(+, ·): Holds for the precise same reason that commutativity
holds.

• Matrices! Specifically, let MR(n, n) denote the set of n× n matrices with real-valued
entries. For example

MR(3, 3) =


a b c
d e f
g h i

 ∣∣∣∣∣∣ a, b, c, d, e, f, g, h, i ∈ R

 .

If we define matrix addition as simply entrywise addition: i.e.
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bn1 bn2 . . . bnn

 =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

an1 + bn1 an2 + bn2 . . . ann + bnn

 ,
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and scalar multiplcation as simply entrywise multiplication, i.e.

c


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 =


ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
...

. . .
...

can1 can2 . . . cann

 ,
then this is a vector space! Specifically, it’s a vector space for precisely the same
reasons that Rn is a vector space: if you just think of a n×n matrix as a very oddly-
written vector in Rn2

, then every argument for why Rn2
is a vector space carries over

to MR(n, n).

It might seem odd to think of matrices as a vector space, but if you go further in
physics or pure mathematics, this is an incredibly useful and common construction.
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