
Math 108a Professor: Padraic Bartlett

Lecture 19: The Determinant

Week 10 UCSB 2013

In our last class, we talked about how to calculate volume in n-dimensions. Specifically,
we defined a parallelotope:

Definition. Given n vectors ~w1, . . . ~wn ∈ Rn, the parallelotope spanned by these vectors
is the collection

{a1 ~w1 + . . .+ an ~wn | 0 ≤ ai ≤ 1, ∀i}.

In the case where n = 2, this is a parallelogram!

From here, we discussed how to find the volume of a parallelotope. Specifically, given
a parallelotope spanned by the vectors { ~w1, . . . ~wn}, we constructed the following vectors:

• ~u1 = ~w1.

• ~u2 = ~w2 − proj( ~w2 onto ~u1).

• ~u3 = ~w3 − proj( ~w3 onto ~u1)− proj( ~w3 onto ~u2).

• ~u4 = ~w4 − proj( ~w4 onto ~u1)− proj( ~w4 onto ~u2)− proj( ~w4 onto ~u3).

...

• ~un = ~wn − proj( ~wn onto ~u1)− . . .− proj( ~wn onto ~un−1).

We thought of each of these vectors as representing the “height” of each ~wi over the
previous ~w1, . . . ~wi−1. With this idea in mind, we defined the volume of our parallelepiped
as

n∏
i=1

||~ui||,

i.e. the product of the lengths of the vectors ~ui.
In this class, we discuss why we care about volume in this class: because it lets us study

the determinant!

1 The Positive Determinant

Consider the following pair of definitions:

Definition. For any n, we define the n-dimensional unit cube as the set of all points

{(a1, . . . an) | 0 ≤ ai ≤ 1,∀i}

You can think of this as the paralleletope spanned by the basis vectors {~e1, . . . ~en}.
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Definition. Take an n × n matrix A. Look at where A sends the unit cube. We know
that by definition, A sends the first basis vector ~e1 to its first column ~ac1 , the second basis
vector ~e2 to ~ac2 , and in general the i-th basis vector ~ei to ~aci .

Therefore, this matrix sends the unit cube to the parallelotope spanned by the columns
of A!

We define the positive determinant of A, written det+(A), as the volume of the
parallelotope spanned by the columns of A.

To illustrate, we quickly calculate an example here:

Example. Calculate the positive determinant of the matrix1 1 0
1 0 1
0 1 1

 .
Answer. We are essentially looking for the volume of the parallelotope spanned by the
vectors (1, 1, 0), (1, 0, 1), (0, 1, 1). We do this by following the outline we discussed last
week, for turning these three vectors into “heights.” In particular, if we label these vectors
as ~w1, ~w2, ~w3, we can just find the ~u1, ~u2, ~u3 vectors as described on the first page of these
notes, and calculate the lengths of those vectors.

First, we note that the length of the first vector (1, 1, 0) is just
√

2.
Then, we note that the “height” of the vector (1, 0, 1) over the vector (1, 1, 0) is just the

length of

~u2 = (1, 0, 1)− proj((1, 0, 1) onto (1, 1, 0))

= (1, 0, 1)− (1, 0, 1) · (1, 1, 0)

(1, 1, 0) · (1, 1, 0)
(1, 1, 0)

= (1, 1, 1)− 1

2
(1, 1, 0)

=

(
1

2
,−1

2
, 1

)
.

which is just
√

3/2.
Finally, we need the height of the vector (0, 1, 1) over the base spanned by (1, 1, 0),

(
1
2 ,−

1
2 , 1
)
.

We do this using the description we came up with before:

~u3 = (0, 1, 1)− proj((0, 1, 1) onto (1, 1, 0))− proj

(
(0, 1, 1) onto

(
1

2
,−1

2
, 1

))
= (0, 1, 1)− (0, 1, 1) · (1, 1, 0)

(1, 1, 0) · (1, 1, 0)
(1, 1, 0)−

(0, 1, 1) ·
(
1
2 ,−

1
2 , 1
)(

1
2 ,−

1
2 , 1
)
·
(
1
2 ,−

1
2 , 1
) (1

2
,−1

2
, 1

)
= (0, 1, 1)− 1

2
(1, 1, 0)− 1

3

(
1

2
,−1

2
, 1

)
=

(
−2

3
,
2

3
,
2

3

)
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which is just 2/
√

3.
If we take the product of these three heights, we get

√
2 ·
√

3/2 · (2/
√

3) = 2. So the
volume of this parallelepiped is 2, and therefore we have

det +(A) = 2.

.

2 The Positive Determinant and Elementary Matrices

The positive determinant has a number of remarkably nice interactions with elementary
matrices! We study these interactions in this section.

Theorem. Take any matrix A. Look at the matrix A ·E, where E is an elementary matrix
of the form

Emultiply entry k by λ.

Then

det +(A · E) = |λ| · det +(A).

Proof. Make the following observations:

• The positive determinant of A is just the volume of the parallelotope spanned by the
column vectors of A.

• The matrix A · E is just the matrix A with its k-th column multiplied by λ.

• Therefore, the positive determinant of A·E is the volumne of the parallelotope spanned
by the column vectors of A, where one of them is multiplied by λ.

• If we pick the λ-multiple as our first vector when calculating the volume, it is clear
that the length of the base is scaled by |λ|, and the length of any height vector is
unchanged (as those are calculated by looking at things orthogonal to the base, and
therefore do not care about the length of the base!)

• Therefore, the volume of A · E is just the volume of A scaled by |λ|.

Done!

Theorem. Take any matrix A. Look at the matrix A ·E, where E is an elementary matrix
of the form

Eswitch entry k and entry l.

Then

det +(A · E) = det +(A).
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Proof. This is like the above proof, but even easier. First, notice that the matrix A·E is just
the matrix A, but with two columns swapped. Therefore, the volume of the parallelepiped
spanned by the columns of A · E is the same as the volume of the parallelepiped spanned
by the columns of A, because they’re both the volumes of the same paralellepiped!

Theorem. Take any matrix A. Look at the matrix A ·E, where E is an elementary matrix
of the form

Eadd λ copies of entry i to entry j .

Then

det +(A · E) = det +(A).

Proof. This is also like the above proof, but slightly harder. Notice that the matrix A · E
is just the matrix A with λ copies of its i-th column added to its j-th column.

We calculate the volume of the parallelepiped spanned by A · E simultaneously with
the volume of the parallelepiped spanned by A’s columns in the following way. For both
parallelotopes, let the vector corresponding to the i-th column in both be the “first” vector
we study (i.e. the ~w1 vector), and the vector corresponding to the j-th column in both be
the “second” vector we study (i.e. the ~w2 vector). The order of the rest won’t matter, so
pick any order for the rest.

To find the volume, then, we just do the following:

1. In both cases, we start by finding the length of the i-th column, which is the same in
both cases – it’s the length of the i-th column of both matrices, which is the same in
both cases.

2. Now, in both cases, we move to the “height” of the j-th column over this i-th column.

Notice that because the j-th column vector of A ·E is just the j-th column of A, plus
λ copies of the k-th column, we have that

orth
(

(the j-th column of A · E) onto (the k-th column of A)
)

=orth
(

(the j-th column of A) onto (the k-th column of A)
)
.

This is because adding copies of the k-th column to a vector doesn’t change the
“amount” of that vector that is orthogonal to that k-th column! (Basically, imagine
adding λ copies of a vector ~w to another vector ~v. This directly increases the quantity
proj(~v onto ~w) by λ~v; therefore, when we form the vector orth(~v onto ~w) = ~v−proj(~v
onto ~w), we subtract those copies off again!)

Therefore, the height of the k-th column over our j-th column is the same in both
cases!

3. Now, notice that the spans of the k, j-th columns in the matrices A,A · E are the
same in both cases, as they both consist of all multiples of the k-th and j-th columns!
Therefore, the “height” of any other vector over these two is unchanged, as well.

Consequently, because the lengths of the base and of the heights are unchanged at each
step, these two paralleletopes have the same volume.
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3 Elementary Matrices and The Positive Determinant: Why
We Care

Elementary matrices are pretty cool in general; however, the main reason we care about
them here is because they let us understand the determinant! In particular, they give us
new results about the positive determinant:

Theorem. Take any two n× n matrices A, B. Then

det +(A ·B) = det +(A) · det +(B).

Proof. First, write A,B as products of elementary matrices:

A = E1 · . . . · En, B = En+1 · . . . · En+m.

We know we can do this from our work in week 8, where we showed that any matrix can
be written as a product of elementary matrices.

Let λ1, . . . λk denote the coefficients corresponding to all of the “multiply an entry by
λ” elementary matrices above in A, and λk+1, . . . λk+l denote those coefficients in B. Then,
we have

det +(A) = |λ1 · . . . · λk|,
det +(B) = |λk+1 · . . . · λk+l|, and

det +(A ·B) = |λ1 · . . . · λk + l| = det +(A) det +(B).

This is because we’ve shown in our work with elementary matrices that

det +(E1 · . . . · En) = det +(E1 · . . . · En−1) · α,

where α is equal to 1 if En was a “swap” or“ add some multiple of an entry to another
entry” matrix, and λ if it was a a “multiply an entry by λ” matrix. Repeatedly using this
observation on A = E1 · . . . ·En, B = En+1 · . . . ·En+m, A ·B = E1 · . . . ·En+m gives us the
three results above.

Therefore, the positive determinant of the product of two matrices is the product of the
positive determinants of these two matrices.

A useful result we used in the above proof is that it gives us a second way to calculate
the positive determinant of various matrices — specifically, decomposing it into elementary
matrices! We explicitly state this here:

Lemma 1. Take any n× n matrix A. Write A as the product of elementary matrices: i.e.

A = E1 · . . . · En.

Then

det +(A) = |λ1 · . . . · λk|.
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We calculate an example determinant with this method here:

Example. Consider the matrix

A =

0 1 2
4 −1 0
2 0 1


Write A as a product of elementary matrices. Use this information to calculate the positive
determinant of A.

Proof. We actually studied this matrix in week 8 in the notes online; there, we showed that

switch rows
r3 and r2︷ ︸︸ ︷1 0 0
0 0 1
0 1 0

 ·
switch rows
r2 and r1︷ ︸︸ ︷0 1 0
1 0 0
0 0 1

 ·
add 2 copies of

r1 to r3︷ ︸︸ ︷1 0 0
0 1 0
2 0 1

 ·
add −1 copies of

r2 to r3︷ ︸︸ ︷1 0 0
0 1 0
0 −1 1



·

multiply row r3
by 0︷ ︸︸ ︷1 0 0

0 1 0
0 0 0


add 1 copies of

r3 to r1︷ ︸︸ ︷1 0 1
0 1 0
0 0 1

 ·
multiply row r1

by 2︷ ︸︸ ︷2 0 0
0 1 0
0 0 1

 ·
add 2 copies of

r3 to r2︷ ︸︸ ︷1 0 0
0 1 2
0 0 1

 = A.

If we use our lemma above, then we have that the determinant of this matrix is just the
product of the lambda values from the “multiply entry k by λ” matrices: in particular, it’s
2 · 0 = 0.

This makes sense: if we look at the three columns of A, we can see that −1 copies of the
first column and four copies of the second column combine together to make two copies of
the third column. Therefore, these three vectors are linearly dependent! In particular, this
means that the parallelepiped spanned by them is “flat”: the “height” of the third column
vector over the first two is 0, and thus has zero volume.

4 The General Determinant

The other reason we care about the interaction of elementary matrices and the “positive”
determinant is that it gives us a way to define the actual determinant!

Definition. The determinant (as opposed to the “positive determinant”) of a matrix A
is defined as follows:

1. Take A, and write it as the product E1 · . . . · En of elementary matrices.

2. To find the determinant det(A) of A, look at these elementary matrices. Let λ1, . . . λk
denote the constants that show up in the “multiply an entry by λi” elementary ma-
trices, and l denote the number of “swap” elementary matrices. Then

det(A) = (−1)l · λ1 · . . . · λk
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This object, in other words, is just the positive determinant from before, i.e. the volume,
except multiplied by a factor of ±1 depending on the signs of the constants λi and the
number of swaps performed. This gives us the following observation for free:

Observation. For any matrix A, | det(A)| = det+(A).

By literally repeating the proof methods used earlier in this talk, we can prove the
following theorem:

Theorem. Take any two n× n matrices A, B. Then

det(A ·B) = det(A) · det(B).

5 The General Determinant: Why We Care

The main reason we care about this “new” determinant, where it can be either positive or
negative, is because it has an exciting new property that the positive determinant did not:
n-linearity!

Definition. Let T be a map from n× n matrices of real numbers to R. We say that T is
n-linear if the following always holds:

• Take any matrix A, with columns ~ac1 , . . . ~acn .

• Suppose that ~aci is equal to some sum of vectors ~x+ ~y.

• Then, consider the two matrices created by replacing this i-th column with the vectors
~x, ~y respectively:

Ax =


...

...
...

...
...

~ac1 . . . ~aci−1 ~x ~aci+1 . . . ~acn
...

...
...

...
...

 ,

Ay =


...

...
...

...
...

~ac1 . . . ~aci−1 ~y ~aci+1 . . . ~acn
...

...
...

...
...

 ,
A map is called n-linear if

T (A) = T (Ax) + T (Ay),

for any column ~aci and pair of vectors ~x, ~y such that ~x+ ~y = ~aci .

Theorem. The determinant is n-linear.
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We first note a quick example that shows why the positive determinant is not n-linear:
simply observe that the positive determinant of[

0 0
0 1

]
is 0, as the parallelogram spanned by (0, 0), (0, 1) has zero area. However, the parallelograms
spanned by [

1 0
0 1

]
,

[
−1 0
0 1

]
both have area 1! Therefore, because 0 6= 1 + 1, the positive determinant is not n-linear.

The proof that the determinant is n-linear is kind of awful. We postpone it to the end of
this talk, in favor of showing you why you care about it: because it gives you the formula
for the determinant you’ve used in the past!

Theorem. Let A be a n × n matrix. Given a row i and a column j, let Aij denote the
n− 1× n− 1 matrix formed by deleting the i-th row and j-th column of A.

Consider the following object:

a11 · det(A11)− a21 · det(A21) + a31 · det(A31) . . .+ (−1)n−1an1 · det(An1).

For example, for a 3× 3 matrix A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, this is just

a11 · det

([
a22 a23
a32 a33

])
− a21 · det

([
a12 a13
a32 a33

])
+ a31 · det

([
a12 a13
a22 a23

])
.

This object is the determinant. I.e. the determinant satisfies the following property:

det(A) = a11 · det(A11)− a21 · det(A21) + a31 · det(A31) . . .+ (−1)n−1an1 · det(An1).

Proof. This is a just a consequence of n-linearity. Take the matrix A, and write its first
column ~ac1 = (a11, a21, . . . an1) as the sum a11 ~e1 + . . .+ an1 ~en.

Let Ai denote the matrix whose first column is replaced by the vector ai1~ei. Then, we
can use n-linearity to write

det(A) = det(A1) + . . .+ det(An).

Now, notice that for each of these matrices Ai, we either have

1. ai1 = 0. In this case, the first column of Ai is all-zeroes, and therefore the volume of
the parallelepiped spanned by the columns of A is 0.

2. ai1 6= 0. In this case, by repeatedly multiplying Ai on the right by matrices of the
form

E
add −

aij
ai1

copies of entry 1 to entry j
,
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we can get a matrix whose i-th row is 0 apart from the entry ai1 in the first column,
without changing the determinant.

Why do we care? Well: notice that the determinant of this matrix is just the deter-
minant of the matrix Ai1, formed by deleting the i-th row and first column from A,
scaled by ai1! (Persuade yourself that this is true if you don’t see why.)

In either case, we have that the determinant of these Ai matrices is the same thing as
ai1 det(Ai1), and therefore that our claim holds.

This technique is what many of you have used before, and perhaps seen, as a definition
of the determinant! It’s great for proofs, but it bears noting that computationally it’s not
the fastest thing out there. In particular, it will need something like n! computations to
find the determinant, as to calculate a determinant of a n× n matrix you need to

• calculate n determinants of n− 1× n− 1-matrices, or

• n(n− 1) determinants of n− 2× n− 2-matrices, or

• n(n− 1)(n− 2) determinants of n− 3× n− 3-matrices, or

...

• n! determinants of 1× 1 matrices.

This gets expensive fast. For example, suppose that we have access to the world’s fastest
supercomputer as of this summer, the Tianhe-2, which has a max speed of 33.86 petaflops
— i.e. it can perform about 3.386 · 1016 arithmetic steps per second. Suppose we wanted
to use it to calculate the determinant using the above process, and we could do everything
but the final addition for free — i.e. assume that to take the determinant of a n×n matrix,
we just have to perform n! addition steps!

So: suppose we wanted to calculate the determinant of a 25 × 25 matrix. How long
would you think this takes?

If you said 14.5 years, you’re correct! Lesson: don’t use this “determinants of smaller
matrices” method.

Conversely: to do the elementary matrix method, we just have to repeatedly solve n
systems of linear equations, one system for each row of A. This isn’t too hard to do: it
takes us like n2 steps to solve a set of n systems of linear equations, and we do n of these
operations, which results in about n3 steps, up to some constants. Our supercomputer can
solve this in 1.4 · 10−20 of a second. So, um, faster.

6 Appendix: Proving The Determinant Is n-Linear

We prove that the determinant is n-linear here.

Proof. To see that the determinant is n-linear: take any matrix A, any column ~aci , and any
pair of vectors ~x, ~y such that ~x+ ~y = ~aci .
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Write both of the vectors ~x, ~y as linear combinations

~x = proj(~x onto columns of A) + orth(~x onto columns of A),

~y = proj(~y onto columns of A) + orth(~y onto columns of A).

Notice that because x + y = ~aci , we have

orth(~x+ ~y onto columns of A) = orth( ~aci onto columns of A) = ~0,

because ~aci is itself a column of A. Consequently, we have

orth(~x onto columns of A) = −orth(~y onto columns of A).

Now, notice that for the matrix Ax, we have

det(Ax) = det(Ax · Eadd λ copies of entry k to entry l,

for any λ, k, l such that k 6= l! In particular, if we write

proj(~x onto columns of A) = x1 ~ac1 + . . .+ xn ~acn ,

proj(~y onto columns of A) = y1 ~ac1 + . . .+ yn ~acn ,

we can use these matrices to see that

det(Ax) = det

Ax · these matrices add −xj copies of each column j 6=i to column i︷ ︸︸ ︷
Eadd −x1 copies of entry 1 to entry i · . . . · Eadd −xn copies of entry n to entry i

 ,

and similarly that

det(Ay) = det

Ay · these matrices add −yj copies of each column j 6=i to column i︷ ︸︸ ︷
Eadd −y1 copies of entry 1 to entry i · . . . · Eadd −yn copies of entry n to entry i

 .

But

Ax ·
these matrices add −xj copies of each column j 6=i to column i︷ ︸︸ ︷

Eadd −x1 copies of entry 1 to entry i · . . . · Eadd −xn copies of entry n to entry i

=


...

...
...

...
...

~ac1 . . . ~aci−1 ~x− (

all entries exceptxi ~aci︷ ︸︸ ︷
x1 ~ac1 + . . .+ xn ~acn) ~aci+1 . . . ~acn

...
...

...
...

...



=


...

...
...

...
...

~ac1 . . . ~aci−1 orth(~x onto columns of A) + xi ~aci ~aci+1 . . . ~acn
...

...
...

...
...

 ,
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and similarly

Ay ·
these matrices add −yj copies of each column j 6=i to column i︷ ︸︸ ︷

Eadd −y1 copies of entry 1 to entry i · . . . · Eadd −yn copies of entry n to entry i

=


...

...
...

...
...

~ac1 . . . ~aci−1 orth(~y onto columns of A) + yi ~aci ~aci+1 . . . ~acn
...

...
...

...
...

 .

Call these two matrices A′x, A
′
y.

There are now two possibilities.

1. The columns of A form a basis for Rn. In this case, we have that the two orth
components above are both zero, because there is nothing in Rn orthogonal to all of
Rn. Therefore, we have that

det(Ax) + det(Ay) = det(A · Emultiply entry i by xi) + det(A · Emultiply entry i by yi)

=xi det(A) + yi det(A)

=(xi + yi) det(A).

So: what is xi + yi? On one hand, we know that

~x+ ~y = ~aci = x1 ~ac1 + . . .+ xn ~acn + y1 ~ac1 + . . .+ yn ~acn ,

and therefore that

~0 = (x1 + y1) ~ac1 + . . .+ (xi + yi − 1) ~aci + . . .+ (xn + yn) ~acn .

This is a nontrivial linear combination of elements in a basis that equals 0; therefore,
all of the coefficients above must be 0! As a result, we must have xi + yi = 1. This
gives us

det(Ax) + det(Ay) =(xi + yi) det(A) = det(A),

as requested.

2. Otherwise, the columns of A do not form a basis for Rn. In this case, the columns of
A are linearly dependent! Take a combination

b1 ~ac1 + . . .+ bn ~acn = ~0

where not all of the bk’s are zero.

If in this combination the coefficent bi is zero, then there is a combination of the
columns of A, not using the i-th column, that combines to zero! This means that
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for both of the matrices Ax, Ay, the columns of these matrices are also a linearly
dependent set, because this combination does not use the i-th column. Therefore, we
have that the determinants of these two matrices are zero, much like the determinant of
A itself, because all three are matrices with linearly dependent columns (and therefore
correspond to paralleletopes that live in a n−1 dimensional space, and thus have zero
volume.)

Otherwise, in this combination the bi coefficient is nonzero. This gives us a way to
express the i-th column of A as a linear combination of the other columns of A!

Therefore, by using the Eadd λ copies of entry k to entry l in a similar way to before, we can
subtract multiples of all of the other columns of Ax from the i-th column of A′x, such
that we get rid of the xi ~aci part, without changing the determinant! We can also do
the same trick to the A′y matrix; this gives us that det(Ax) is the determinant of the
matrix that you get by replacing the i-th column of A with orth(~x onto columns of A),
and similarly for det(Ay)!

But, because orth(~x onto columns of A) = −orth(~y onto columns of A), we have that
the determinants of these two matrices are the same, except one is the opposite sign
of the other! Therefore, we have that det(Ax) = −det(Ay), and thus

det(Ax) + det(Ay) = 0 = det(A),

again because the columns of A are linearly dependent.
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