
Math 108a Professor: Padraic Bartlett

Lecture 16: Elementary Matrices

Week 8 UCSB 2013

Last week, we introduced the idea of matrices. In this lecture, we introduce a series of
special kinds of matrices: the elementary matrices.

1 Elementary Matrices: Definitions

Definition. The first matrix, Emultiply entry k by λ, is the matrix corresponding to the lin-
ear map that multiplies its k-th coördinate by λ and does not change any of the others.
Specifically, it’s the matrix corresponding to the linear map

(x1, x2 . . . xn) 7→ (x1, x2, . . . xk−1, λxk, xk+1, . . . xn).

If we plug in the standard basis vectors ~e1, . . . ~en into this linear map, we can see that we
have

~e1 = (1, 0, 0 . . . 0) 7→ (1, 0, 0 . . . 0),

~e2 = (0, 1, 0 . . . 0) 7→ (0, 1, 0 . . . 0),

...

~ek = (0 . . .

k-th coordinate︷︸︸︷
1 . . . 0) 7→ (0 . . .

k-th coordinate︷︸︸︷
λ . . . 0),

...

~en = (0 . . . 0, 1) 7→ (0 . . . 0, 1).

If we use these outputs as our columns, we can see that our linear map corresponds to the
following matrix:

Emultiply entry k by λ =



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 λ 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the value at
(k, k), which is λ.
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The second matrix, Eswitch entry k and entry l, corresponds to the linear map that swaps its
k-th coördinate with its l-th coördinate, and does not change any of the others. Specifically,
it’s the matrix corresponding to the linear map

(x1, x2 . . . xn) 7→ (x1, x2, . . . xk−1, xl, xk+1, . . . xl−1, xk, xl+1, . . . xn).

If we plug in the standard basis vectors ~e1, . . . ~en into this linear map, we can see that we
have

~e1 = (1, 0, 0 . . . 0) 7→ (1, 0, 0 . . . 0),

~e2 = (0, 1, 0 . . . 0) 7→ (0, 1, 0 . . . 0),

...

~ek = (0 . . .

k-th coordinate︷︸︸︷
1 . . . 0) 7→ (0 . . .

l-th coordinate︷︸︸︷
1 . . . 0),

...

~el = (0 . . .

l-th coordinate︷︸︸︷
1 . . . 0) 7→ (0 . . .

k-th coordinate︷︸︸︷
1 . . . 0),

...

~en = (0 . . . 0, 1) 7→ (0 . . . 0, 1).

If we use these outputs as our columns, we can see that our linear map corresponds to the
following matrix:

Eswitch entry k and entry l =



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1 . . . 0
0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 1


You can create this matrix by starting with a matrix with 1’s down its diagonal and 0’s
elsewhere, and switching the k-th and l-th columns.

Finally, the third matrix, Eadd λ copies of entry k to entry l, for k 6= l, corresponds to the
linear map that adds λ copies of its k-th coördinate to its l-th coördinate and does not
change any of the others. Specifically, it’s the matrix corresponding to the linear map

(x1, x2 . . . xn) 7→ (x1, x2, . . . xl−1, λxk + xl, xl+1, . . . xn).

If we plug in the standard basis vectors ~e1, . . . ~en into this linear map, we can see that we

2



have

~e1 = (1, 0, 0 . . . 0) 7→ (1, 0, 0 . . . 0),

~e2 = (0, 1, 0 . . . 0) 7→ (0, 1, 0 . . . 0),

...

~el = (0 . . .

l-th coordinate︷︸︸︷
1 . . . 0) 7→ (0 . . .

k-th coordinate︷︸︸︷
λ . . .

l-th coordinate︷︸︸︷
1 . . . 0),

...

~en = (0 . . . 0, 1) 7→ (0 . . . 0, 1).

If we use these outputs as our columns, we can see that our linear map corresponds to the
following matrix:

Eadd λ copies of entry k to entry l =



1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1 0 . . . 0
0 . . . λ 0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 1


This matrix has 1’s down its diagonal and 0’s elsewhere, with an exception for the value in
row l, column k, which is λ.

These three matrices are called the elementary matrices. They’re incredibly cool, and
we’re going to study them in these lecture notes.

2 Elementary Matrices: What They Do

The first thing we want to talk about is what these matrices do! Specifically, take any n×n
matrix A. What is the matrix corresponding to Emultiply entry k by λ ◦A? What do the other
elementary matrices do to A?

We study this in the following theorem:

Theorem 1. Take any n × n matrix A. Suppose that we are looking at the composition
E◦A, where E is one of our elementary matrices. Then, we have the following three possible
situations:

• if E = Emultiply entry k by λ, then E◦A would be the matrix A with its k-th row multiplied
by λ.
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• if E = Eswitch entry k and entry l, then E ◦A would be the matrix A with its k-th and l-th
rows swapped, and

• if E = Eadd λ copies of entry k to entry l, then E ◦ A would be the matrix A with λ copies
of its k-th row added to its l-th row.

Proof. To prove these claims, we repeatedly use the following result from last week, that
told us how to “compose” or “multiply” two matrices together:

Theorem. Take any pair of linear maps A : Rn → Rm, B : Rm → Rk with associated
matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 , B =


b1,1 b1,2 . . . b1,m
b2,1 b2,2 . . . b2,m

...
...

. . .
...

bk,1 bk,2 . . . bk,m

 .
Look at the linear map given by the composition of these two maps: i.e. consider the

linear map B ◦ A : Rn → Rk. Denote the row vectors of B as ~bri ’s and the column vectors
of A as ~acj ’s. We claim that this linear map corresponds to the k × n matrix

~br1 · ~ac1 ~br1 · ~ac2 . . . ~br1 · ~acn
~br2 · ~ac1 ~br2 · ~ac2 . . . ~br2 · ~acn
. . . . . .

. . . . . .
~brk · ~ac1 ~brk · ~ac2 . . . ~brk · ~acn

 .
In other words, to get the matrix given by composing two matrices, we simply dot the rows
of the first matrix with the columns of the second matrix in the manner described above.

Given this result, we simply calculate E ◦A for each of the three cases we’ve described
above.

To start, take any n× n matrix A, row k and constant λ, and examine the product

Emultiply entry k by λ ◦A

=



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 λ 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1


◦



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

What do entries in the resulting matrix look like? Well, there are two cases:
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• in the location (i, j), for any i 6= k and any j, we know that the entry there is just
the dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = aij ,

because the 1 in the i-th row of E is in the i-th place.

• in the location (k, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , λ, . . . 0) · (a1j , . . . anj) = λkj ,

because the λ in the k-th row of E is in the k-th place.

By inspection, this matrix is precisely

a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
...

...
...

...
...

. . .
...

ak−1,1 ak−1,2 ak−1,3 ak−1,4 ak−1,5 . . . ak−1,n

λak1 λak2 λak3 λak4 λak5 . . . λakn
ak+1,1 ak+1,2 ak+1,3 ak+1,4 ak+1,5 . . . ak+1,n

...
...

...
...

...
. . .

...
an1 an2 an3 an4 an5 . . . ann


.

So this elementary matrix works as claimed.
The proofs for the other two elementary matrices are similar. For the matrix Eswitch entry k and entry l,

we again examine the product E ◦A:

Eswitch entry k and entry l ◦A

=



1 0 . . . 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0 . . . 0
0 0 . . . 0 . . . 1 . . . 0
0 0 . . . 0 . . . 0 . . . 0
0 0 . . . 1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0 . . . 1


◦



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

Again, what do entries in the resulting matrix look like? In this situation, there are
three cases:

• In the location (i, j), for any i 6= k, l and any j, we know that the entry there is just
the dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = aij ,

because the 1 in the i-th row of E is in the i-th place.
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• In the location (k, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = alj ,

because the 1 in the k-th row of E is in the l-th place.

• In the location (l, j), for any j, we know that the entry there is just the dot product
of E’s l-th row and A’s j-th column: i.e.

entry (l, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = akj ,

because the 1 in the l-th row of E is in the k-th place.

By inspection, this matrix is

a11 a12 a13 a14 a15 . . . a1n
...

...
...

...
...

. . .
...

ak−1,1 ak−1,2 ak−1,3 ak−1,4 ak−1,5 . . . ak−1,n

al1 al2 al3 al4 al5 . . . aln
ak+1,1 ak+1,2 ak+1,3 ak+1,4 ak+1,5 . . . ak+1,n

...
...

...
...

...
. . .

...
al−1,1 al−1,2 al−1,3 al−1,4 al−1,5 . . . al−1,n

ak1 ak2 ak3 ak4 ak5 . . . akn
al+1,1 al+1,2 al+1,3 al+1,4 al+1,5 . . . al+1,n

...
...

...
...

...
. . .

...
an1 an2 an3 an4 an5 . . . ann



.

This is A with its k-th and l-th rows swapped, as claimed.
Finally, we turn to Eadd λ copies of entry k to entry k, and again look at E ◦A:

Eadd λ copies of entry k to entry l ◦A

=



1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 1 0 . . . 0
0 . . . λ 0 . . . 0 1 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . 1


◦



a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
a31 a32 a33 a34 a35 . . . a3n
a41 a42 a43 a44 a45 . . . a4n
a51 a52 a53 a54 a55 . . . a5n
...

...
...

...
...

. . .
...

an1 an2 an3 an4 an5 . . . ann


.

Again, what do entries in the resulting matrix look like? In this situation, there are just
two last cases:
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• In the location (i, j), for any i 6= l and any j, we know that the entry there is just the
dot product of E’s i-th row and A’s j-th column: i.e.

entry (i, j) = (0, . . . , 1, . . . 0) · (a1j , . . . anj) = aij ,

because the 1 in the i-th row of E is in the i-th place.

• In the location (l, j), for any j, we know that the entry there is just the dot product
of E’s k-th row and A’s j-th column: i.e.

entry (k, j) = (0, . . . , 0, λ, 0, . . . , 0, 1, 0, . . . 0) · (a1j , . . . anj) = λakj + alj ,

because the λ in the l-th row of E is in the k-th place, and the 1 is in the l-th place.

By inspection, this matrix is

a11 a12 a13 a14 a15 . . . a1n
a21 a22 a23 a24 a25 . . . a2n
...

...
...

...
...

. . .
...

al−1,1 al−1,2 al−1,3 al−1,4 al−1,5 . . . al−1,n

λak1 + al1 λak2 + al2 λak3 + al3 λak4 + al4 λak5 + al5 . . . λakn + aln
al+1,1 al+1,2 al+1,3 al+1,4 al+1,5 . . . al+1,n

...
...

...
...

...
. . .

...
an1 an2 an3 an4 an5 . . . ann


.

This is A with λ times its k-th row added to its l-th row, as claimed.
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