
Math 108a Professor: Padraic Bartlett

Lecture 15: Matrices

Week 7 UCSB 2013

Today’s talk: matrices!

1 Matrices: Definitions

We formally define a matrix as follows:

Definition. Take a linear map T : Rn → Rm. Let the vectors ~e1, . . . ~en denote the standard
basis vectors for Rn: i.e. ~e1 = (1, 0, . . . 0), ~e2 = (0, 1, 0 . . . 0), . . . ~en = (0, 0 . . . 0, 1).

For each of the vectors T (~ei) in Rm, write

T (~ei) = (t1,i, t2,i, . . . , tm,i),

where the values ti,j are all real numbers
We can turn T into an m× n matrix, i.e. a m× n grid of real numbers, as follows:

T −→ Tmatrix =


t1,1 t1,2 . . . t1,n
t2,1 t2,2 . . . t2,n

...
...

. . .
...

tm,1 tm,2 . . . tm,n

 .
In other words,

T −→ Tmatrix =


...

... . . .
...

T (~e1) T (~e2) . . . T ( ~en)
...

... . . .
...

 ,
Similarly, given some m× n matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 ,
we can interpret A as a linear map Amap : Rn to Rm as follows:

• For any of the standard basis vectors ~ei, we define Amap(~ei) to simply be the vector
(a1,i, . . . am,i).

• For any other vector (x1, . . . xn) ∈ Rn, we define Amap(x1, . . . xn) to simply be the
corrresponding linear combination of the ~ei’s: i.e.

Amap : (x1, . . . xn) := x1 ·Amap(~e1) + . . .+ xnAmap( ~en).
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In practice, we will usually not bother writing the subscripts “map” and “matrix” on these
objects, and think of linear maps from Rn to Rm and m× n matrices as basically the same
things.

For example, consider the map Tθ : R2 → R2, that we worked with on problem #6 of
homework #6.

(1,0)θ cos(θ)
sin(θ)1

(cos(θ),sin(θ))
(0,1)

θ cos(θ)
sin(θ)

1
(-sin(θ),cos(θ))

Because this map sends (1, 0) to (cos(θ), sin(θ)), and (0, 1) to (− sin(θ), cos(θ)), we would
express this map as a matrix as follows:

Tθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Under this interpretation, we would say that Tθ(x, y) = (x cos(θ)−y sin(θ), x sin(θ+y cos(θ)),
i.e.

Tθ(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
x
y

]
= (x cos(θ)− y sin(θ), x sin(θ) + y cos(θ))

2 Matrix Properties

Many of you have used matrices in other classes; in these settings, you’ve probably applied
matrices to vectors, and taken “products” of matrices. However, in these classes, people
typically never justify why we take products of matrices in the way we do, or why applying
a matrix to a vector is calculated in the way you’re shown.

That’s dumb. We’re fixing this here.

Theorem. Take any linear map A : Rn → Rm. Let A have the associated matrix

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 .
Denote the row vectors (ai,1, . . . ai,n) ∈ Rn of our matrix A with the vectors ~ari , for short-
hand.
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We claim that for any ~x ∈ Rn, we have

A(~x) = (~x · ~ar1 , ~x · ~ar2 , . . . ~x · ~arm) .

In other words, to calculate what a matrix A does to a vector ~x, we simply construct the
vector given by dotting each of the rows of A with the vector ~x.

Proof. We prove this fact by using the definition of A, along with linearity.
By definition, we know that A is the linear map Rn → Rm, that sends the standard

basis vectors to the columns of A: i.e.

A(~e1) = (a1,1, a2,1, . . . , am,1)

A(~e2) = (a1,2, a2,2, . . . , am,2)

...

A( ~en) = (a1,n, a2,n, . . . , am,n)

Therefore, by linearity, we can see that

A(x1, . . . xn) = A(x1 ~e1 + x2 ~e2 + . . .+ xn ~en)

= x1A(~e1) + x2A(~e2) + . . .+ xnA( ~en)

= x1(a1,1, a2,1, . . . , am,1) + x2(a1,2, a2,2, . . . , am,2) + . . .+ xn(a1,n, a2,n, . . . , am,n).

If we add all of these vectors together, we get that the first coördinate of the result
A(x1, . . . xn) is just

x1a1,1 + x2a1,2 + x3a1,3 + . . .+ xna1,n,

the second coördinate is

x1a2,1 + x2a2,2 + x3a2,3 + . . .+ xna2,n,

and in general the k-th coördinate is

x1ak,1 + x2ak,2 + x3ak,3 + . . .+ xnak,n.

Notice that this expression is simply the dot product of ~x with the k-th row of A! If we
plug this observation in for every coördinate of A(~x), we get

A(~x) = (~x · ~ar1 , ~x · ~ar2 , . . . ~x · ~arm) ,

which is what we claimed was true.

This proof above shows that the process that most people learn when they first see
matrices — take the rows of the matrix and dot them with the vector you’re applying the
matrix to — is in fact the only thing that applying a matrix to a vector could sensibly be!
This is reassuring: it’s nice to see that the definitions we’ve seen before in other classes
weren’t just made up, but were actually chosen because they’re the only possible things
that can be true. (This is kind of like the feeling of proving 1 + 1 = 2; on one hand you
already know that it’s true, but it’s cool seeing why it must be true!)
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Example. Again, return to the rotation map Tθ. We showed above that it has matrix

Tθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

If we just use the result above, we have that

Tθ(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
x
y

]
= ((x, y) · (cos(θ),− sin(θ)), (x, y) · (sin(θ) + cos(θ)))

= (x cos(θ)− y sin(θ), x sin(θ) + y cos(θ)) .

Reassuringly, this is the same thing we got in our direct calculation for where this matrix
sends (x, y)!

Another property people often know from earlier classes is how to “multiply” matrices.
We interpret this in the sense of composing linear maps corresponding to matrices
in the following theorem:

Theorem. Take any pair of linear maps A : Rn → Rm, B : Rm → Rk with associated
matrices

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 am,2 . . . am,n

 , B =


b1,1 b1,2 . . . b1,m
b2,1 b2,2 . . . b2,m

...
...

. . .
...

bk,1 bk,2 . . . bk,m

 .
Look at the linear map given by the composition of these two maps: i.e. consider the

linear map B ◦ A : Rn → Rk. Denote the row vectors of B as ~bri ’s and the column vectors
of A as ~acj ’s. We claim that this linear map corresponds to the k × n matrix

~br1 · ~ac1 ~br1 · ~ac2 . . . ~br1 · ~acn
~br2 · ~ac1 ~br2 · ~ac2 . . . ~br2 · ~acn
. . . . . .

. . . . . .
~brk · ~ac1 ~brk · ~ac2 . . . ~brk · ~acn

 .
In other words, to get the matrix given by composing two matrices, we simply dot the rows
of the first matrix with the columns of the second matrix in the manner described above.
In other words, we do matrix multiplication.

Proof. So: we want to find the matrix corresponding to B ◦A. To do this, according to the
definitions, we just need to find where B ◦A sends the basis vectors ~e1, . . . ~en of Rn!

This is not too hard. Take any basis vector ~ei. Apply A to this basis vector. By
definition, we know that this yields the i-th column of A: i.e. A(~ei) = ~aci .

To find B◦A as applied to ~ei, then, we can just calculate B of A(~ei) = ~aci . In particular,
we can calculate B( ~aci) by using the theorem we just proved earlier for how matrices apply
to vectors: this tells us that

B(A(~ei)) =
(
~br1 · ~aci , ~br2 · ~aci , . . . ~brk · ~aci

)
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Then, by definition, the matrix corresponding to B◦A is the matrix that has the vectors(
~br1 · ~aci , ~br2 · ~aci , . . . ~brk · ~aci

)
as its columns: i.e.
~br1 · ~ac1 ~br1 · ~ac2 . . . ~br1 · ~acn
~br2 · ~ac1 ~br2 · ~ac2 . . . ~br2 · ~acn
. . . . . .

. . . . . .
~brk · ~ac1 ~brk · ~ac2 . . . ~brk · ~acn

 .

Example. Let T : R2 → R2 be the linear map

T =

[√
2
2 −

√
2
2√

2
2

√
2
2

]
,

and S : R2 → R2 be the linear map

S =

[
0 1
1 0

]
.

What is the matrix given by the composition S ◦ (T ◦ S)?

Answer. If we just apply problem 2 from the above section, we have

(T ◦ S) =

[√
2
2 −

√
2
2√

2
2

√
2
2

]
·
[
0 1
1 0

]
=

(√22 ,−√22 ) · (0, 1)
(√

2
2 ,−

√
2
2

)
· (1, 0)(√

2
2 ,
√
2
2

)
· (0, 1)

(√
2
2 ,
√
2
2

)
· (1, 0)


=

[
−
√
2

2

√
2
2√

2
2

√
2
2

]
.

Therefore, we have

S ◦ (T ◦ S) =

[
0 1
1 0

]
·

[
−
√
2

2

√
2
2√

2
2

√
2
2

]
=

(0, 1) ·
(
−
√
2
2 ,
√
2
2

)
(0, 1) ·

(√
2
2 ,
√
2
2

)
(1, 0) ·

(
−
√
2
2 ,
√
2
2

)
(1, 0) ·

(√
2
2 ,
√
2
2

)
=

[ √
2
2

√
2
2

−
√
2
2

√
2
2

]
.

In other words, this is the map that sends (1, 0) to
(√

2
2 ,−

√
2
2

)
and (0, 1) to

(√
2
2 ,
√
2
2

)
. If

you recall our discussion from the past homework set, this is in fact the rotation matrix
that rotates R2 by −π/4!

We can double-check this answer by thinking geometrically: the map T is just the matrix
given by the linear map Tπ/4 that rotates space by π/4 radians, while the map S is the
matrix that flips the x and y-coördinates. Composing these maps as S ◦T ◦S, geometrically
speaking, should give you a map that first switches the x and y coordinates, then rotates
by π/4 in the “switched” space, then flips back — which is just rotation by −π/4!
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