Math 108a Professor: Padraic Bartlett

Lecture 14: The Rank-Nullity Theorem
Week 6 UCSB 2013

In today’s talk, the last before we introduce the concept of matrices, we prove what is
arguably the strongest theorem we’ve seen thus far this quarter — the rank-nullity theorem!

1 The Rank-Nullity Theorem: What It Is

The rank-nullity theorem is the following result:

Theorem. Let U,V be a pair of finite-dimensional vector spaces, and let T': U — V be a
linear map. Then the following equation holds:

dimension(null(7")) 4+ dimension(range(7)) = dimension(U).

Though we have never mentioned this theorem in class before, we have proved that it holds
in a number of specific situations in earlier classes! For example, in lecture 11 where we
were describing why the null space was interesting, we considered the linear map T : R? —
R, T(z,y) = 2z — y. Using this map, we made the observations that

1. the null space of T is the line {(z,2z) | € R}, and

2. for any a € R, T~!(a) is just a copy of this line shifted by some constant: i.e.
T 1(a) ={(0,—a) + i | @ € null(T)}.

We illustrated this situation before with the following picture:

7 /
‘4 4 L bbbt

el
T T

T T

PESTI Rt

Graphically, what we did here is decompose the domain of our linear map, R?, into
“range(T)-many” copies of the null space. If we look at the dimensions of the objects
we studied here, we said that we could take a two-dimensional object (the domain) and
break it into copies of this one dimensional object (the null space), with as many copies
of this one-dimensional object as we have T~!(a)’s (i.e. elements in the range.)

In general, we said in this class that we could always break the domain into copies of
the null space, with as many copies as we have sets T~1(a)’s, i.e. elements a in the range!
This should lead you to believe that the rank-nullity theorem is true: it certainly seems like
it should always hold, given our work in that earlier lecture.



However, this might not feel a lot like a proper “proof” to some of you: there’s a pretty
picture here, but where is the rigor? How am I turning this decomposition into an argument
about dimension (which is a statement about bases, which we’re not saying anything about
here?)

The point of this lecture is to take the above intuition, and turn it into a proper argu-
ment. We do so as follows:

2 The Proof: Some Useful Lemmas

First, recall the following theorem, that we proved over the course of two days earlier in the
class (see lecture 6):

Theorem. The idea of “dimension” is well defined. In other words: suppose that U is a
vector space with two different bases Bi, By containing finitely many elements each. Then
there are as many elements in B; as there are in Bs.

We will need this theorem to prove the rank-nullity theorem. As well, we will also need
the following:

Theorem. Suppose that U is a n-dimensional vector space with basis B, and that S is a
subspace of U. Then S is also finite dimensional, and in particular has dimension no greater
than n.

Proof. We prove this statement by contradiction. Suppose that S is a set with dimension
greater than n. Using this fact, create a set T of n + 1 linearly independent vectors in S as
follows. At first, simply pick any nonzero vector ¥ € S, and put ¢ € T. Then, repeat the
following process

1. Look at T'. If it has no more than n vectors in it, then it cannot span S, because S
has dimension greater than n. So there is some vector @ € S that is not in the span
of T.

2. Put @ in T. Notice that if 7" was linearly independent before we added 0, it is still
linearly independent, because @ was not in the span of T

So: we now have a set of n + 1 linearly independent vectors in S, which means in
particular we have a set of n + 1 linearly independent vectors in U! This is a problem,
because U is n-dimensional. To see why, notice that we can“grow” this set T of n 4+ 1
linearly independent vectors into a basis for U as follows. Start with T". If T spans U, stop.
Otherwise, repeat the following process until we get a linearly independent set that spans
U:

1. If T does not span U, then there is some element b in the basis B of U that is not
in the span of T' (because otherwise, if T contained all of a basis for U in its span, it
would be forced to contain all of U itself in its span!).

2. Add bto T. Again, notice that if T' was linearly independent before we added 5, it is
still linearly independent, because b was not in the span of T



Eventually, this process will stop, as after n steps your set T will at the least contain all of
the elements of B, which is a basis for U!

So this creates a linearly independent set that spans U: i.e. a basis! And in particular
a basis with at least n 4+ 1 elements, because T started with n + 1 elements and had more
things potentially added to it later.

However, B is a basis for U with n elements. We’ve proven that dimension is well-defined:
i.e. that a vector space cannot have two different bases with different sizes! Therefore, this
is impossible, and we have a contradiction. Consequently, our assumption must be false: in
other words, S must have dimension no greater than n. L]

3 The Main Proof
With these tools set up, we proceed with the main proof:

Theorem. Let U,V be a pair of finite-dimensional vector spaces, and let T': U — V be a
linear map. Then the following equation holds:

dimension(null(7")) 4+ dimension(range(7")) = dimension(U).

Proof. We prove this as follows: we will create a basis for U with as many elements as
dimension(null(7")) 4+ dimension(range(7")), which will clearly demonstrate the above equal-
ity. We do this as follows:

1. By using Theorem 2, we can see that the null space of T is finite dimensional. Take
some basis Np for the null space of T.

2. Now: let B be a basis for U, and Rp be some set that is empty for now. If Np is also
a basis for U, stop. Otherwise, repeat the following process:

(a) Look at Np U Rp. If it is a basis for U, stop. Otherwise, there is some vector b
that is in the basis set B, that is not in Ng U Rp. (Again, this is because if not,
T would contain the entirety of a basis for U in its span, which would force it to
contain U itself in its span!)

(b) Put bin Rp. Notice that if Ng U Rp was linearly independent before we added
b, it is still linearly independent, because 7 was not in the span of Ng U Rp.

As before, this process will eventually end, because we only have finitely many ele-
ments in B.

3. At the end of this process, we have two sets Rp, N such that their union is a basis
for U. Look at the set T(Rp) = {T(7) | ¥ € Rg}. We claim that T(Rp) is a basis for
the range of T'. To prove this, we will simply show that this set spans the range, and
is linearly independent.

4. To see that T(Rp) spans the range: take any ¥ in the range of T'. Because ' is in the
range, there is some 4 € U such that T'(¢) = . Write @ as some linear combination



of elements in our basis Rg U Np: i.e.
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In other words, w is just @ if you get rid of all of the parts made using vectors in the
null space! Now, simply observe that on one hand, « is an element in the span of Rp,
and on the other

T=T@ =T Y N+ > il

7,€RpB n;ENB
cr( 3 a) (3 e
7 ERB n;ENp
= D AT+ Y AT()
7,€RB n;ENB
= ) ANT(%)+0
ERB
= Y NT(),
T'?GRB

because things in the null space get mapped to 0!

Therefore, given any ¥ in the range, we have expressed it as a linear combination of
elements in T'(Rp). In other words, T'(Rp) spans the range of V.

. To show that T'(Rp) is linearly independent: take any linear combination of vectors
in T(Rp) that is equal to 0:

> MNT(R) =0

We want to show that all of the coefficients \; are 0.
To see this, start by using the fact that 7" is linear:
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This means that the vector
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is in the null space of T'. Therefore, we can create a linear combination of vectors in
Np that are equal to this vector: i.e. we can find elements in Np and constants ~;
such that
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But this means that we have
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which is a linear combination of elements in our basis RpU Npg that equals 0! Because
this set is a basis, it is linearly independent; therefore all of the coefficients in this
linear combination must be 0. In particular, this means that all of the \;’s are 0,
which proves what we wanted: that the set T'(Rp) is linearly independent!

Consequently, we have created a basis for U of the form Np and Rp, where T(Rp) is a
basis for the range and Np is a basis for the null space. This means that, in particular, the
dimension of U is the number of elements in Np (i.e. the dimension of the null space) plus
the number of elements in Rp (i.e. the dimension of the range.) So we’re donel! U
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