Math 108a	Professor: Padraic Bartlett
Lecture 12: Injection, Surjection and	Linear Maps
Week 4	UCSB 2013

Today's lecture is centered around the ideas of **injection** and **surjection** as they relate to linear maps. While some of you may have seen these terms before in Math 8, many of you indicated in class that a quick refresher talk on the concepts would be valuable. We do this here!

1 Injection and Surjection: Definitions

Definition. A function f with domain A and codomain B, formally speaking, is a collection of pairs (a, b), with $a \in A$ and $b \in B$, such that there is exactly one pair (a, b) for every $a \in A$. Informally speaking, a function $f : A \to B$ is just a map which takes each element in A to an element in B.

Examples.

- $f: \mathbb{Z} \to \mathbb{N}$ given by f(n) = 2|n| + 1 is a function.
- g: N → N given by g(n) = 2|n| + 1 is also a function. It is in fact a different function than f, because it has a different domain!
- $j: \mathbb{N} \to \mathbb{N}$ defined by $h(n) = n^2$ is yet another function
- The function j depicted below by the three arrows is a function, with domain $\{1, \lambda, \varphi\}$ and codomain $\{24, \gamma, \text{ Zeus}\}$:

It sends the element 1 to γ , and the elements λ, φ to 24. In other words, $h(1) = \gamma$, $h(\lambda) = 24$, and $h(\varphi) = 24$.

Definition. We call a function f injective if it never hits the same point twice – i.e. for every $b \in B$, there is at most one $a \in A$ such that f(a) = b.

Examples. The function h from before is not injective, as it sends both λ and φ to 24:

However, suppose that we add a new element π to our codomain, and make φ map to π . Then, this modified function is now injective, because no two elements in its domain are sent to the same place:

A converse concept to the idea of injectivity is that of **surjectivity**, as defined below: **Definition.** We call a function f **surjective** if it hits every single point in its codomain – i.e. if for every $b \in B$, there is **at least one** $a \in A$ such that f(a) = b.

Examples. The function h from before is not injective, as it doesn't send anything to Zeus:

However, if we add a new element ρ to our domain, and make ρ map to Zeus, our function is now surjective, as it hits all of the elements in its codomain:

Definition. We call a function **bijective** if it is both injective and surjective.

Examples. The function

from our first example is not a bijection, because it is not a surjection: nothing is mapped to the element Zeus.

Similarly, the function

from our second example is not a bijection, because it is not an injection: two different elements λ, φ are mapped to 24.

However, the function

is a bijection, as we can easily check: every element in the codomain is mapped to by some element in the domain, and no two elements in the domain are mapped to the same element.

2 Injection and Surjection: Relations to Linear Maps

Let $T: U \to V$ be a linear map between two vector space U, V. In this situation, the two concepts of **injection** and **surjection** are intimately related to the ideas of **null space** and **range** that we've been studying over the last week, in the following ways:

- A map T is a surjection if and only if $\operatorname{range}(T) = V$. This is literally from the definition of range, as the only way that $\operatorname{range}(T)$ can equal V is if every element of V can arise as some output of T: i.e. if T is surjective.
- Slightly less obviously, a map T is an injection if and only if $\operatorname{null}(T) = \vec{0}$. This comes from the theorem we proved in our last class, where we showed that whenever $T(\vec{x}) = \vec{y}$, then the sets $T^{-1}(\vec{y})$ have the form $\{\vec{x} + \vec{n} \mid \vec{n} \in \operatorname{null}(T)\}$. If $\operatorname{null}(T)$ is the set containing the single element $\{\vec{0}\}$, then the only element in $T^{-1}(\vec{y})$ is $\vec{x} + \vec{0} = \vec{x}$. Therefore, given any element \vec{y} in the codomain V, there is at most one element in the domain U that maps to \vec{y} , because there is at most one element in $T^{-1}(\vec{y})$!

This is convenient for us in a number of ways: it is often easier to just study the null space rather than try to look at every set $T^{-1}(\vec{y})$, which cuts down on a lot of the work involved in checking if something is injective!

We make one final definition in this class:

Definition. Let U, V be a pair of vector spaces. A map $T : U \to V$ is called an **isomorphism** if it is a linear map and a bijection.

Our discussion above gives us the following theorem about isomorphisms:

Theorem. Let $T : U \to V$ be a linear map between two vector space U, V. T is an isomorphism if and only if the following two conditions hold:

- range(T) = V.
- $\operatorname{null}(T) = \{\vec{0}\}.$

Essentially, two vector spaces are called **isomorphic** if they are in some senses "the same," up to a relabeling. To be more specific: consider the map $T: U \to V$ as a way to "relabel" the elements of U as elements of V. Because T is a bijection, every element of U is sent to some element in V, and no element in V is mapped to by two different elements in U. Consequently, you can think of this map T as just a way of "assigning" the elements of U to all of the elements of V. Furthermore, this map is linear, so it "plays nicely with addition and multiplication" – i.e. if we add and multiply elements before or after our relabeling, it doesn't matter! Therefore, this map T gives us a way to look at our elements of U in a way such that

- these elements of U are all matched up with elements of V, and
- the operations $+, \cdot$ on U are equivalent to the operations $+, \cdot$ on V.

Therefore, in a sense, these two spaces are basically "the same" as vector spaces.

To make this concrete, consider the following example:

Examples. The map $T : \mathbb{R}^2 \to \mathcal{P}_1(\mathbb{R})$, defined by

$$T(a,b) = a + bx$$

is an isomorphism.

Proof. We first notice that this map is linear:

• For any (a, b), (c, d), we have

$$T((a,b) + (c,d)) = T(a+c,b+d) = a+c+(b+d)x$$

$$T(a,b) + T(c,d) = a+bx+c+dx = (a+c)+(b+d)x.$$

Therefore this map is additive.

• For any $(a, b), \lambda$, we have

$$T(\lambda(a,b)) = T(\lambda a + \lambda b) = \lambda a + \lambda bx$$
$$\lambda T(a,b) = \lambda(a+bx) = \lambda a + \lambda bx.$$

Therefore this map is homogenous.

This proves our map is linear.

To check surjectivity, we calculate the range:

range
$$(T) = \{T(a, b) \mid (a, b) \in \mathbb{R}^2\}$$

= $\{a + bx \mid (a, b) \in \mathbb{R}^2\}$
= $\mathcal{P}_1(\mathbb{R})$, the codomain.

Therefore this map is surjective.

Finally, to check injectivity, we calculate the null space:

$$\operatorname{null}(T) = \{(a, b) \in \mathbb{R}^2 \mid T(a, b) = 0\}$$
$$= \{(a, b) \in \mathbb{R}^2 \mid a + bx = 0\}$$
$$= \{(a, b) \in \mathbb{R}^2 \mid a = 0, b = 0\}$$
$$= \{(0, 0)\}.$$

Therefore this map is injective. We have checked all of the properties required by a map to be an isomorphism; therefore, this map is an isomorphism. \Box

It's worth noting that these two isomorphic spaces do agree with our earlier claim that "isomorphic things are pretty much the same as vector spaces." $\mathcal{P}_1(\mathbb{R})$, the set of all polynomials of degree at most 1 with real-valued coefficients, might seem pretty different to \mathbb{R}^2 on a first glance. However, whenever we've worked with it as a vector space, there's really been no difference between the things we can make with a + bx's and ordered pairs (a, b): they're basically two different ways of writing down the same information!

This is part of the idea behind isomorphism: it's a way of letting us know when two things are "basically the same" as vector spaces. This is one of the fundamental ideas in mathematics in linear algebra; often, we will be presented with some terrible/awfullooking thing, and have to prove that it has certain properties. The language and concept of isomorphism is a technique we have to get rid of some of that awfulness — we can often turn something that looks difficult to work with into a simpler-looking object that's "essentially the same" with an isomorphism!

You can already see this idea at work with the example we have above: many of you are comfortable with \mathbb{R}^2 as a vector space, but get uneasy when presented with the idea of polynomials as vectors. This isomorphism is a way of transforming the space you're comfortable in into one that you may be less comfortable with: by using it, you can just work in the simpler space \mathbb{R}^2 , and simply use the isomorphism as a way of translating results about \mathbb{R}^2 into ones about the space $\mathcal{P}_1(\mathbb{R})$!