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In our last lecture, we started studying the motivation behind the concept of the null
space. In today’s talk, we return to this study.

1 Null Space: The Theorem

In our last class, we stated but did not have time to prove the following theorem:

Theorem 1. Let T : U → V be a linear map. Let N(T ) denote the null space of T , and
~u, ~w be any pair of vectors from U, V respectively such that T (~u) = ~v.

Let T−1(~v) denote the set of all vectors in U that get mapped to ~v by T : i.e.

A~v = {~w ∈ U | T (~w) = ~v}.

Then T−1(~v) is just N(T ) translated by ~u! In other words,

T−1(~v) = {~w ∈ U | there is some ~x ∈ N(T ) such that ~w = ~x + ~u}

In other words, understanding the collection of elements that all get mapped to ~0 basically
lets us understand the collection of elements that get mapped to any fixed vector ~v.

We prove it here.

Proof. Let ~u, ~w be any pair of vectors from U, V respectively such that T (~u) = ~v.
Take any vector ~w ∈ T−1(~v). By definition, we know that T (~w) = ~v.
Look at the vector ~w − ~u. If we use the fact that T is linear, we can see that

T (~w − ~u) = T (~w)− T (~u) = ~v − ~v = ~0;

therefore, ~w − ~u is in the null space N(T ) of T . Therefore, we can write

~w = (~w − ~u) + ~u;

i.e. we can write ~w as the sum of an element from N(T ) and the vector ~u.
Now, take any vector ~x ∈ N(T ). Again, because T is linear, we have

T (~x + ~u) = T (~x) + T (~u) = ~0 + ~v = ~v;

therefore, ~x + ~u is in T−1(~v).
So we’ve shown both that any element in T−1(~v) can be written as the sum of ~u with an

element of the null space of T , and furthermore that any such sum is an element of T−1(~v).
Therefore, these two sets are equal!
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People sometimes call these T−1(~v) sets the “fibers” of the linear map T .
This theorem, hopefully, gives us some idea why we care about the null space: if we

understand T−1(~0), then we actually understand T−1(~a), for any vector ~a! That’s powerful,
and surprising.

But wait, there’s more! Not only does this tell us what these T−1(~a) things look like,
it actually tells us what the entirety of U looks like in terms of the null space! Specifically,
make the following two observations:

• Take any ~u in U. There is some set T−1(~v) such that ~u ∈ T−1(~v). Specifically, just
look at T (~u): this is equal to some element ~a in V . Then ~u ∈ T−1(~a), by definition.

• No vector ~u is in two different sets T−1(~v), T−1(~w). This is because if we apply T to
any element in T−1(~v), we get ~v by definition; similarly, if we apply T to any vector
in T−1(~w), we get ~w by definition. Therefore, if we had an element ~u in both sets,
applying T to ~u would have to yield ~v and ~w simultaneously, which is only possible if
~v = ~w.

So the sets T−1(~a) “partition” the set U : i.e. we can divide U up into various copies
of these T−1(~v) sets, such that every element of U is in exactly one of these sets! In other
words, if we have a linear map T : U → V , we can “chop up” U into a bunch of translated
copies of the null space of T .

The diagram below, sketched in our last class, may help you visualize this:

U V

range(T)

null(T) + x→

null(T)

null(T) + y→

null(T) + z→

0
→x→

y→

z→

T

To make this diagram more concrete, consider the following example:

Example. Consider the linear map T : R2 → R, defined by T (x, y) = 2x− y. What is the
null space of this map? What do the sets T−1(a) look like, for various values of a ∈ R?

Answer. The null space of this map, by definition, is the set

null(T ) = {(x, y) | T (x, y) = 0}.
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We know that T (x, y) = 0 if and only if 2x − y = 0; in other words, whenever 2x = y.
Therefore, the null space of T can be more succinctly described as the set

null(T ) = {(x, 2x) | x ∈ R}.

Furthermore, notice that for any a ∈ R, we have T (a, 0) = a. Therefore, our theorem above
tells us that we can express T−1(a) as the null space of T shifted by (a, 0): i.e.

T−1(a) = {(a + x, 2x) | x ∈ R}

Consequently, we can “partition” U into these T−1(a)-sets, all of which are lines with
slope 2 through the point (a, 0); each of these sets is then mapped to their corresponding
value a by T . This can be visualized by the rather beautiful picture below:

T

Before we started this pair of talks, we already understood why we cared about the
range of a linear map T — it let us talk about the “outputs” of T . In a sense, the aim
of these two talks has been to show that understanding the null space of a linear map T
performs a similar task: it gives us a ton of information about the “inputs” of T .
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