Math 108a	Professor: Padraic Bartlett	
	Lecture 11: Understanding Null Space	
Week 4		UCSB 2013

In our last lecture, we started studying the motivation behind the concept of the null space. In today's talk, we return to this study.

1 Null Space: The Theorem

In our last class, we stated but did not have time to prove the following theorem:
Theorem 1. Let $T: U \rightarrow V$ be a linear map. Let $N(T)$ denote the null space of T, and \vec{u}, \vec{w} be any pair of vectors from U, V respectively such that $T(\vec{u})=\vec{v}$.

Let $T^{-1}(\vec{v})$ denote the set of all vectors in U that get mapped to \vec{v} by T : i.e.

$$
A_{\vec{v}}=\{\vec{w} \in U \mid T(\vec{w})=\vec{v}\} .
$$

Then $T^{-1}(\vec{v})$ is just $N(T)$ translated by $\vec{u}!$ In other words,

$$
T^{-1}(\vec{v})=\{\vec{w} \in U \mid \text { there is some } \vec{x} \in N(T) \text { such that } \vec{w}=\vec{x}+\vec{u}\}
$$

In other words, understanding the collection of elements that all get mapped to $\overrightarrow{0}$ basically lets us understand the collection of elements that get mapped to any fixed vector \vec{v}.

We prove it here.
Proof. Let \vec{u}, \vec{w} be any pair of vectors from U, V respectively such that $T(\vec{u})=\vec{v}$.
Take any vector $\vec{w} \in T^{-1}(\vec{v})$. By definition, we know that $T(\vec{w})=\vec{v}$.
Look at the vector $\vec{w}-\vec{u}$. If we use the fact that T is linear, we can see that

$$
T(\vec{w}-\vec{u})=T(\vec{w})-T(\vec{u})=\vec{v}-\vec{v}=\overrightarrow{0}
$$

therefore, $\vec{w}-\vec{u}$ is in the null space $N(T)$ of T. Therefore, we can write

$$
\vec{w}=(\vec{w}-\vec{u})+\vec{u} ;
$$

i.e. we can write \vec{w} as the sum of an element from $N(T)$ and the vector \vec{u}.

Now, take any vector $\vec{x} \in N(T)$. Again, because T is linear, we have

$$
T(\vec{x}+\vec{u})=T(\vec{x})+T(\vec{u})=\overrightarrow{0}+\vec{v}=\vec{v} ;
$$

therefore, $\vec{x}+\vec{u}$ is in $T^{-1}(\vec{v})$.
So we've shown both that any element in $T^{-1}(\vec{v})$ can be written as the sum of \vec{u} with an element of the null space of T, and furthermore that any such sum is an element of $T^{-1}(\vec{v})$. Therefore, these two sets are equal!

People sometimes call these $T^{-1}(\vec{v})$ sets the "fibers" of the linear map T.
This theorem, hopefully, gives us some idea why we care about the null space: if we understand $T^{-1}(\overrightarrow{0})$, then we actually understand $T^{-1}(\vec{a})$, for any vector \vec{a} ! That's powerful, and surprising.

But wait, there's more! Not only does this tell us what these $T^{-1}(\vec{a})$ things look like, it actually tells us what the entirety of U looks like in terms of the null space! Specifically, make the following two observations:

- Take any \vec{u} in U . There is some set $T^{-1}(\vec{v})$ such that $\vec{u} \in T^{-1}(\vec{v})$. Specifically, just look at $T(\vec{u})$: this is equal to some element \vec{a} in V. Then $\vec{u} \in T^{-1}(\vec{a})$, by definition.
- No vector \vec{u} is in two different sets $T^{-1}(\vec{v}), T^{-1}(\vec{w})$. This is because if we apply T to any element in $T^{-1}(\vec{v})$, we get \vec{v} by definition; similarly, if we apply T to any vector in $T^{-1}(\vec{w})$, we get \vec{w} by definition. Therefore, if we had an element \vec{u} in both sets, applying T to \vec{u} would have to yield \vec{v} and \vec{w} simultaneously, which is only possible if $\vec{v}=\vec{w}$.

So the sets $T^{-1}(\vec{a})$ "partition" the set U : i.e. we can divide U up into various copies of these $T^{-1}(\vec{v})$ sets, such that every element of U is in exactly one of these sets! In other words, if we have a linear map $T: U \rightarrow V$, we can "chop up" U into a bunch of translated copies of the null space of T.

The diagram below, sketched in our last class, may help you visualize this:

To make this diagram more concrete, consider the following example:
Example. Consider the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by $T(x, y)=2 x-y$. What is the null space of this map? What do the sets $T^{-1}(a)$ look like, for various values of $a \in \mathbb{R}$?

Answer. The null space of this map, by definition, is the set

$$
\operatorname{null}(T)=\{(x, y) \mid T(x, y)=0\}
$$

We know that $T(x, y)=0$ if and only if $2 x-y=0$; in other words, whenever $2 x=y$. Therefore, the null space of T can be more succinctly described as the set

$$
\operatorname{null}(T)=\{(x, 2 x) \mid x \in \mathbb{R}\}
$$

Furthermore, notice that for any $a \in \mathbb{R}$, we have $T(a, 0)=a$. Therefore, our theorem above tells us that we can express $T^{-1}(a)$ as the null space of T shifted by $(a, 0)$: i.e.

$$
T^{-1}(a)=\{(a+x, 2 x) \mid x \in \mathbb{R}\}
$$

Consequently, we can "partition" U into these $T^{-1}(a)$-sets, all of which are lines with slope 2 through the point $(a, 0)$; each of these sets is then mapped to their corresponding value a by T. This can be visualized by the rather beautiful picture below:

Before we started this pair of talks, we already understood why we cared about the range of a linear map T - it let us talk about the "outputs" of T. In a sense, the aim of these two talks has been to show that understanding the null space of a linear map T performs a similar task: it gives us a ton of information about the "inputs" of T.

