Math 108a

Professor: Padraic Bartlett

Homework 9: Volume and Determinants

UCSB 2013

As always, problems need to show work and proofs in order to receive full credit. Have fun! Also, there are a pair of bonus questions at the end of this problem set! Check them out.

- 1. Find the volume of the following paralleletopes:
 - (a) $\{(1,2),(4,1)\}$ (b) $\{(1,1,1),(1,1,0),(1,0,0)\}.$
- 2. Find the positive determinants of the following matrices:

(a)	0	1]		-1	1	1]
(a)	1	0	(b)	1	1	-1
-	-	_		1	-1	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

- 3. Find the determinants (i.e. not the positive determinant, the normal determinant, that we defined on Wednesday / in the online notes) of the following matrices:
 - (a) $\begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$
- 4. Suppose that A is a matrix of the form

1	a_{12}	a_{13}		a_{1n}
0	1	a_{23}		a_{2n}
0	0	1		a_{3n}
:	:	:	•.	:
			•	
LO	0	0	• • •	

Show, only using the techniques that we've studied in class thus far, that the determinant of A is 1.

5. For any *n*, define the $n \times n$ checkerboard matrix C_n as the following matrix: $c_{ij} = 1$ if i + j is even, and 0 otherwise. For example, the 5×5 checkerboard matrix is the following object:

[1	0	1	0	1]
0	1	0	1	0
1	0	1	0	1
0	1	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} $	1	1 0 1 0 1
1	0	1	0	1

For any n, find the value of $det(C_n)$.

1 Bonus Problems!

1. Determinant Tic-Tac-Toe is the following game:

- There are two players, player 0 and player 1. They play using a 3×3 matrix, which starts off with all of its cells blank.
- Player 1 places a 1 into some cell in an empty 3×3 matrix.
- Player 0 counters with a 0 in a vacant position.
- Play continues back and forth, with player 1 entering 1's and player 0 entering 0's, until the 3 × 3 matrix is completely filled in with five 1's and four 0's.
- Player 0 wins if the determinant is 0; player 1 wins otherwise.
- (a) (+5 pts) Beat me in a game of determinant Tic-Tac-Toe. (You may choose to go first or second. Games can either be played in person during OH, before/after class, or over email. One attempt per person; if you lose, no do-overs. Games can be played until Tuesday, December 10.)
- (b) (+5 pts) Can player 1 always win; i.e. no matter what player 0 does, can player 1 always force the determinant to be 0? Either create a winning strategy for player 1 if it exists, or create a "response" strategy for player two that can force player 1 to lose, no matter what they do. Prove that your strategy works.
- 2. Let A be a $n \times n$ matrix with entries $a_{ij} = |i j|$. For example, when n = 3, we have

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}.$$

(+10 pts) Find the determinant of A for arbitrary values of n.