Math 108a	Professor: Padraic Bartlett	
	Homework 9: Volume and Determinants	

As always, problems need to show work and proofs in order to receive full credit. Have fun! Also, there are a pair of bonus questions at the end of this problem set! Check them out.

1. Find the volume of the following paralleletopes:
(a) $\{(1,2),(4,1)\}$
(b) $\{(1,1,1),(1,1,0),(1,0,0)\}$.
2. Find the positive determinants of the following matrices:
(a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
3. Find the determinants (i.e. not the positive determinant, the normal determinant, that we defined on Wednesday / in the online notes) of the following matrices:
(a) $\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right]$
4. Suppose that A is a matrix of the form

$$
\left[\begin{array}{ccccc}
1 & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & 1 & a_{23} & \ldots & a_{2 n} \\
0 & 0 & 1 & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Show, only using the techniques that we've studied in class thus far, that the determinant of A is 1 .
5. For any n, define the $n \times n$ checkerboard matrix C_{n} as the following matrix: $c_{i j}=1$ if $i+j$ is even, and 0 otherwise. For example, the 5×5 checkerboard matrix is the following object:

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

For any n, find the value of $\operatorname{det}\left(C_{n}\right)$.

1 Bonus Problems!

1. Determinant Tic-Tac-Toe is the following game:

- There are two players, player 0 and player 1 . They play using a 3×3 matrix, which starts off with all of its cells blank.
- Player 1 places a 1 into some cell in an empty 3×3 matrix.
- Player 0 counters with a 0 in a vacant position.
- Play continues back and forth, with player 1 entering 1's and player 0 entering 0 's, until the 3×3 matrix is completely filled in with five 1 's and four 0 's.
- Player 0 wins if the determinant is 0 ; player 1 wins otherwise.
(a) (+5 pts) Beat me in a game of determinant Tic-Tac-Toe. (You may choose to go first or second. Games can either be played in person during OH , before/after class, or over email. One attempt per person; if you lose, no do-overs. Games can be played until Tuesday, December 10.)
(b) (+5 pts) Can player 1 always win; i.e. no matter what player 0 does, can player 1 always force the determinant to be 0 ? Either create a winning strategy for player 1 if it exists, or create a "response" strategy for player two that can force player 1 to lose, no matter what they do. Prove that your strategy works.

2. Let A be a $n \times n$ matrix with entries $a_{i j}=|i-j|$. For example, when $n=3$, we have

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right] .
$$

(+10 pts) Find the determinant of A for arbitrary values of n.

