Math 108a	Professor: Padraic Bartlett
	Homework 8: More Matrices

As always, problems need to show work and proofs in order to receive full credit. Have fun!

1. In the last HW, we looked at the map $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, that rotates a vector in the plane counterclockwise by theta. Specifically, we looked at this linear map, and showed that it is the matrix

$$
T_{\theta}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] .
$$

Take two such matrices T_{θ}, T_{γ}, and calculate the matrix

$$
T_{\theta} \circ T_{\gamma} .
$$

Show that it is equal to the matrix $T_{\gamma+\theta}$.
2. For a given matrix M, let M^{n} denote the matrix acquired by composing M with itself n times: i.e.

$$
M^{n}=\overbrace{M \circ M \circ \ldots \circ M}^{n \text { times }} .
$$

 this Monday. Find the matrices corresponding to

In general, find a formula for

Explain why your answer is correct.
3. (a) Suppose that P is an $n \times n$ matrix such that $P^{2}=P$. Prove that $P^{n}=P$, for any positive integer n.
(b) For any n, find an $n \times n$ matrix P, not equal to the identity matrix, such that $P^{2}=P$.
4. Write the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

as a product of elementary matrices.
5. Write the matrix
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
as a product of elementary matrices.
6. How long did this set take you? (As always, asked solely for calibration purposes.)

