Practice Homework 5: Injection, Surjection, and Linear Maps Not due: just for practice UCSB 2013

Have fun!

1. Let $T: U \to V$ and $S: V \to W$ be a pair of injective maps. Define the composition of these two maps $S \circ T: U \to W$ as the map $S \circ T(\vec{u}) = S(T(\vec{u}))$.

Is $S \circ T$ injective? Either prove that it is injective, or construct a counterexample.

- 2. Let $T: U \to V$ and $S: V \to W$ be a pair of surjective maps. Is $S \circ T$ necessarily surjective? Either prove that it must be surjective, or construct a counterexample.
- 3. Let $S = \{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ be some set of vectors, and let $\operatorname{span}(S) = V$ denote the vector space spanned by these vectors. Let $T: V \to V$ be a surjective linear map. Show that $T(S) = \{T(\vec{v_1}), T(\vec{v_2}), \dots, T(\vec{v_n})\}$ also spans V.
- 4. Let $T : \mathbb{C}^3 \to \mathbb{C}^2$ be a linear map with nullspace null $(T) = \{(z_1, z_1 + z_2, z_2) \mid z_1, z_2 \in \mathbb{C}\}$. Can T be surjective? Either prove that T cannot be surjective, or find an example of such a map T that is surjective.
- 5. Consider the map $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$, that takes a vector (x, y) and rotates it by angle θ in a counterclockwise direction around the origin. For example, the vector (1, 0) gets mapped to $(\cos(\theta), \sin(\theta))$, as depicted below:

- (a) Show that the map T_{θ} is linear.
- (b) Find coefficients $\alpha, \beta, \gamma, \delta$ such that

$$T(x,y) = (\alpha x + \beta y, \gamma x + \delta y).$$