Math 108a	Professor: Padraic Bartlett
Practice Homework 5: Injection, Surjection, and Linear Maps	
Not due: just for practice	UCSB 2013

Have fun!

1. Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be a pair of injective maps. Define the composition of these two maps $S \circ T: U \rightarrow W$ as the map $S \circ T(\vec{u})=S(T(\vec{u}))$.
Is $S \circ T$ injective? Either prove that it is injective, or construct a counterexample.
2. Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be a pair of surjective maps. Is $S \circ T$ necessarily surjective? Either prove that it must be surjective, or construct a counterexample.
3. Let $S=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}\right\}$ be some set of vectors, and let $\operatorname{span}(S)=V$ denote the vector space spanned by these vectors. Let $T: V \rightarrow V$ be a surjective linear map. Show that $T(S)=\left\{T\left(\overrightarrow{v_{1}}\right), T\left(\overrightarrow{v_{2}}\right), \ldots T\left(\overrightarrow{v_{n}}\right)\right\}$ also spans V.
4. Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}$ be a linear map with nullspace null $(T)=\left\{\left(z_{1}, z_{1}+z_{2}, z_{2}\right) \mid z_{1}, z_{2} \in\right.$ $\mathbb{C}\}$. Can T be surjective? Either prove that T cannot be surjective, or find an example of such a map T that is surjective.
5. Consider the map $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, that takes a vector (x, y) and rotates it by angle θ in a counterclockwise direction around the origin. For example, the vector $(1,0)$ gets mapped to $(\cos (\theta), \sin (\theta))$, as depicted below:

(a) Show that the map T_{θ} is linear.
(b) Find coefficients $\alpha, \beta, \gamma, \delta$ such that

$$
T(x, y)=(\alpha x+\beta y, \gamma x+\delta y)
$$

