Math 108a	Professor: Padraic Bartlett	
	Homework 4: Properties of Vector Spaces	
Due Thursday, Oct. 24, 3pm, South Hall 6516	UCSB 2013	

Remember: homework problems need to show work in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! As always, if you have any questions, feel free to contact either Shahab or I via email or office hours. Have fun!

There is also a bonus question! It is completely optional. Completing it will give you ten free points. (It's really hard.)

1. Consider the following map $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{4}(\mathbb{R})$:

$$
T\left(a+b x+c x^{2}\right)=\int_{0}^{x}\left(a+b t+c t^{2}\right) d t .
$$

Show that this a linear transformation. Find the range and null space of this map.
2. Consider the following map $T: \mathbb{R}^{3} \rightarrow \mathcal{P}_{1}(\mathbb{R})$:

$$
T(a, b, c)=c x-\frac{d}{d x}\left(a+b x^{2}\right)
$$

Show that this a linear transformation. Find the range and null space of this map.
3. Take any one-dimensional vector space ${ }^{1} V$ over a field F. Let T be a linear map $V \rightarrow V$. Show that there is some constant $\lambda \in F$ such that for any $\vec{v} \in V, T(\vec{v})=\lambda \vec{v}$.
4. Let $T: U \rightarrow V$ be a linear map, and let $T(\overrightarrow{0})=\vec{v}$. What are the possible values of \vec{v} ?
5. Suppose that $T: U \rightarrow V$ is a linear map, and that $S: V \rightarrow W$ is also a linear map. Consider the map $S \circ T: U \rightarrow W$, defined by

$$
S \circ T(\vec{u})=S(T(\vec{u})) .
$$

Is this a linear map? Why or why not?
6. Can you find a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\operatorname{null}(T)=\{(x, x, x) \mid x \in \mathbb{R}\} ?
$$

Either construct such a map if it exists, or prove that it cannot exist.
7. How long did this set take you? (As always, asked for calibration purposes.)

Bonus! Find a map $T: \mathbb{R} \rightarrow \mathbb{R}$ that is additive, but not homogeneous. Or prove that no such map exists.

[^0]
[^0]: ${ }^{1}$ Common examples are \mathbb{R} and \mathbb{C}, though there are others. Your proof should work for general onedimensional vector spaces, not just for these two examples.

