Math 108a	Professor: Padraic Bartlett	
	Homework 3: Properties of Vector Spaces	
Due Thursday, Oct. 10, 3pm, South Hall 6516		

Remember: homework problems need to show work in order to receive full credit. Simply stating an answer is only half of the problem in mathematics; you also need to include an argument that persuades your audience that your answer is correct! As always, if you have any questions, feel free to contact either Shahab or I via email or office hours. Have fun!

1. Find four vectors in \mathbb{R}^{3}, such that the dot product of any two of them is negative.
2. In class, we asked the following question: for what values of n can you find a basis for \mathbb{R}^{n} with the two properties \star, \ddagger described below?
\star. Every vector in the basis is made up out of entries from ± 1.
\ddagger. The dot product of any two vectors in the basis is 0 .
We found examples of such bases for $\mathbb{R}^{1}, \mathbb{R}^{2}$ and \mathbb{R}^{4}, and showed that no such basis exists for \mathbb{R}^{3}.
Find a basis for \mathbb{R}^{8} with the two properties \star, \ddagger.
3. Show that there is no basis for \mathbb{R}^{7} with the two properties \star, \ddagger.
4. Let S be the collection of all polynomials with degree at most 2 that has a root at $x=7$: in other words:

$$
S=\left\{p(x)=a+b x+c x^{2} \mid p(7)=0\right\} .
$$

Explain, briefly, why this is a vector space. (Feel free to reference the answer and logic used in HW\#2, problem 3.)
After you do this, find a basis for S.
5. Consider the vector space $\mathbb{R}[x]$, consisting of all polynomials with finite degree with real-valued coefficients. Find a basis for this space. Does this space have a basis with finitely many elements?
6. Consider the following map $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$:

$$
L((a, b, c, d))=(d, c, b, a)
$$

Is this a linear transformation?
7. How long did this set take you? (As always, asked for calibration purposes.)

