Dynamical Systems	Instructor: Padraic Bartlett
	Lecture 4: Sharkovsky's Theorem
Week 3	Mathcamp 2014

In our last talk, we prove the main goal of this class: Sharkovsky's theorem.

Theorem. (Sharkovsky's theorem.) Suppose that I is a closed interval and f is any continuous function from I to itself. Then, if f has a n-periodic point, it has a m-periodic point for any $n \triangleleft m$ (under the Sharkovsky ordering.)

Proof.