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We ended our last class by proving the following result (whose name I found while doing
some research last night):

Theorem. (The Itinerary Lemma.) Let fpxq be a continuous function on the interval ra, bs,
and I0, . . . In´1 denote a collection of closed intervals that are each contained within ra, bs.
Assume that

1. fpIkq Ě Ik`1, for every k “ 0 . . . n´ 2, and

2. fpIn´1q Ě I0,

where by fpIkq we mean the set given by applying f to all of the points in the interval Ik.
(In other words, applying f to any one interval Ik gives you a set that contains the next
interval Ik`1)

Then there is some point x0 P I0 such that

1. fnpx0q “ x0, and

2. fkpx0q P Ik, for every k “ 0, . . . n´ 1.

Today, we’re going to talk about how to use this result!

1 Why We Care: Chaos

Consider the following problem:

Problem. Suppose we have a fluid filled with particles in some reasonably-close-to-one-
dimensional object, which we can model as an interval ra, bs. Furthermore, suppose that
we know how this fluid is “mixing:” i.e. that we have some function f : ra, bs Ñ ra, bs, such
that fpxq tells you where a particle at location x will wind up after one step forward in
time.

Where do your particles go? Do they settle down? Do they all clump together at one
end? In other words: what does fn look like as n grows very large?

Something you might hope for is that your fluid particles settle down: that they either
converge to various states, or at least that they all settle into some small set of predictable
periodic orbits. In the worst case scenario, however, you might have something like the
following:

Definition. A function f is called chaotic if for any n, it has a particle of period n.

So! The punchline for this class, and the reason we proved the Itinerary Lemma, is the
following theorem of Li and Yorke:
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Theorem. Suppose that f is a continuous function on ra, bs with range contained in ra, bs.
Then if f has a 3-periodic point, it is chaotic.

Before we start this proof, we introduce some useful notation:

Notation. Given a function f and intervals I0, I1, we write I0 Ñ I1 if fpI0q Ě I1. In
particular, if fpI0q Ą Ii, we will write I0 ý to denote that f of this interval contains itself.

Proof. We first note that because our function is a continuous map on ra, bs that contains
ra, bs in its range, we get a point of period 1 by the intermediate value theorem, as mentioned
on day 1. The case for k “ 2 is similarly trivial; we leave this for the HW! So it suffices to
search for points of period k, for k ě 2.

Take a triple x0 ă x1 ă x2 of points that form a 3-periodic orbit. Either fpx1q “ x2
or fpx1q “ x0; assume that fpx1q “ x0 without loss of generality, as the proof will proceed
identically in the other case. Then we have fpfpx1qq “ fpx0q “ x2.

Let I‹0 “ rx0, x1s and I‹1 “ rx1, x2s. Note that because fpx0q “ x2, fpx1q “ x0, fpx2q “
x1, by the intermediate value theorem, we have

I˚1 Ô I˚0 ý .

So: let I0 “ . . . In´2 “ I‹0 , and In´1 “ I‹1 . Apply our theorem from before that was
designed to find periodic points: this gives us a point y such that y, fpyq, . . . fn´2pyq P I‹0 ,
fn´1pyq P I‹1 , and fnpyq “ y.

I claim that this point is a n-periodic point. We already have that fnpyq “ y; we just
need to prove that fkpyq ‰ y, for any k “ 1, . . . n´1. To see this, proceed by contradiction.
Suppose that fkpyq “ y, for some k ă n ´ 1. Then fn´1pyq is equal to an earlier term
fn´1´kpyq, because applying f k times is the same thing as doing nothing. But this means
that

• on one hand, fn´1pyq P I‹1 , and

• on the other hand, fn´1pyq “ fn´1´kpyq P In´1´k “ I‹0 .

Therefore this point is in both sets. But the only point in both I‹0 “ rx0, x1s and I‹1 “ rx1, x2s
is x1; so fn´1pyq “ x1. But then fnpyq “ y “ x0, and thus fpyq “ fpx0q “ x2 R I1 “ rx0.x1s.

So we have a contradiction to our assumption that x0 was not a point with period n.

This is . . . weird. All we used in the above statement was that there was a point with
period 3 – i.e. some point such that fpfpfpxqqq “ x, while fpxq, fpfpxq ‰ x. And out of
nowhere we got points of every period: chaos!

Surprisingly, this result is not even the strangest thing we’re proving in this talk. Con-
sider the following ordering on the natural numbers:

Definition. The Sharkovsky ordering on the natural numbers is the following ordering:

20 ¨ 3Ÿ 20 ¨ 5Ÿ 20 ¨ 7Ÿ 20 ¨ 9Ÿ . . .Ÿ 21 ¨ 3Ÿ 21 ¨ 5Ÿ 21 ¨ 7Ÿ 21 ¨ 9Ÿ . . .

. . .Ÿ 22 ¨ 3Ÿ 22 ¨ 5Ÿ 22 ¨ 7Ÿ 22 ¨ 9Ÿ . . .Ÿ 23 ¨ 3Ÿ 23 ¨ 5Ÿ 23 ¨ 7Ÿ 23 ¨ 9Ÿ . . .

. . .

. . .Ÿ 25 Ÿ 24 Ÿ 23 Ÿ 22 Ÿ 21 Ÿ 1.
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In words: take the natural numbers, and break them into the following groups:

• S0: All odd numbers greater than 1.

• S1: All numbers of the form 21 ¨ pan odd number greater than 1q.

• S2: All numbers of the form 22 ¨ pan odd number greater than 1q.

• . . .

• S8: All powers of two.

For each i P N, order via the Sharkovsky ordering Ÿ each Si using the normal ordering on
the natural numbers: i.e 3Ÿ 5Ÿ 7. . .

Order the set S8 using the opposite ordering from the normal ordering on the natural
numbers: i.e. . . .Ÿ 16Ÿ 8Ÿ 4Ÿ 2Ÿ 1.

Finally, to compare any two elements si, sj from different sets Si, Sj , simply say that
si Ÿ sj whenever i ă j in the normal ordering on NY t8u.

The reason we care about this is the following theorem:

Theorem. Suppose that I is a closed interval and f is any continuous function from I to
itself. Then, if f has a n-periodic point, it has a m-periodic point for any nŸm (under the
Sharkovsky ordering.)

In other words, it’s not simply true that period 3 implies every possible period! We have
many other strange consequences, like the following:

• Period 5 implies every period except for possibly 3.

• Period 7 implies every period except for possibly 3 and 5.

• Period 6 implies all of the even periods.

• Any function with finitely many periodic points must only have points with periods
equal to powers of 2.

How would we prove such a thing? Well: given that we already have a functioning proof
that period 3 implies chaos, perhaps we can adapt it to prove this stronger claim!

If you break down our proof from earlier, it effectively has three main parts:

• First, we recognized that any triple x0 ă x1 ă x2 corresponding to a point of period
3 has one of two orbits x1 Ñ x0 Ñ x2 or x1 Ñ x2 Ñ x0.

• Then, we translated these orbits into intervals rx0, x1s, rx1, x2s, rx0, x2s, and noted
that we have either

– rx0, x1s
˚ Ô rx1, x2s

˚ ý or

– rx1, x2s
˚ Ô rx0, x1s

˚ ý.

• Finally, we came up with a clever way to apply the Itinerary Lemma to secuences
made out of these two intervals, that let us create points with any period.
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Therefore, if we want to modify this proof, we should start by examining the first of
these parts! We do this here:

Lemma. Suppose that f is a continuous function on some interval I with the following
two properties:

• There is some n such that f has a point, x0, of period 2n` 1.

• For all 1 ď m ă n, f has no points of period 2m` 1.

Then the orbit of x0 must look like one of the following:

x1 x5x4x6 x7x3x2 x0

x1 x5x4x6 x7x3x2 x0
In other words: if we define xi “ f ipx0q, we have either

x2n ă x2n´2 ă . . . ă x4 ă x2 ăx0 ă x1 ă x3 ă . . . ă x2n´1, or

x2n´1 ă x2n´3 ă . . . ă x3 ă x1 ăx0 ă x2 ă x4 ă . . . ă x2n.

Before we start our proof, let’s try to understand what we’re even attempting to do
here.

First: to make our notation easier, reorder the 2n ` 1 points in the orbit of x0 as the
sequence

z1 ă z2 ă . . . ă z2n ă z2n`1.

Now: let’s look at what we’re trying to prove. In both of the pictures that we’re trying
to prove must hold, we have this sort of “spiraling-out” relation, where

• an initially small interval rx0, x1s becomes after one application of f the slightly larger
interval rx2, x1s,

• which after another application of f becomes the larger interval rx2, x4s,

• which after yet another application of f becomes the larger interval rx3, x4s,
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• . . .

• which at our last stage becomes our entire collection of points!

Furthermore, this “spiraling-out” relation looks like pretty much enforces the structure
we’re claiming must exist: if there is some seed interval rzm, zm`1s such that

• Repeatedly applying f to this interval expands it by precisely one zi at each applica-
tion, and

• the“side” this zi shows up on alternates from left to right,

we’ve got the structure that we want! (Sketch out anything satisfying the two properties
above to see why this is sufficient.) This suggests that if we want to prove our claim, we
should attempt to look for this sort of interval structure in our zi’s.

In tomorrow’s lecture, we’ll do precisely this!
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