
NP and Latin Squares Instructor: Padraic Bartlett

Lecture 2: NP-Completeness

Week 4 Mathcamp 2014

In our last class, we introduced the complexity classes P and NP. To motivate why
we grouped all of NP together (instead of, say, breaking it into subclasses like NP-with-
2n-runtime, NP-with-n!-runtime, . . .), we started showing how solutions to some problems
in NP can “create” solutions for other problems in NP! For example, we showed that
any algorithm that could solve instances of the k-independent-set problem could also solve
instances of 3SAT: we did this via a transformation process that turned any 3SAT formula
into a graph, in such a way that k-independent sets in this graph corresponded to ways to
satisfy our 3SAT formula.

In this class, we will make this notion of “reduction” formal and study a few examples.
After doing this, we will introduce the concept of NP-hardness — a problem that every
task in NP can be reduced to — and prove the surprising Cook-Levin theorem, which states
that there is an NP-hard problem contained in NP!

We start with the notion of reduction, which we informally discussed yesterday:

1 Reductions

Definition. Take any two problems L,M . We say that L can be polynomial-time re-
duced to M if any algorithm that solves M can be turned into an algorithm to solve L,
with an increase in runtime that is at most polynomial. Formally: given any algorithm A
that solves instances xL of L of size |xL| “ n in time tpnq, there is a polynomial p and an
algorithm B that solves any instance xM of M of size |xM | “ n in time pptpnqq.

Intuitively, this is a way of saying that the problem L is “essentially” M at its core: if you
know how to solve M , then you mostly know how to solve L, up to some polynomial-time
details.

We will simply use the word reduction in place of polynomial-time reduction throughout
this class for brevity’s sake.

We closed our last class by reducing 3SAT to k-independent set. We perform another
reduction here:

Theorem. Consider the problem of determining whether a graph G on n vertices has a
3-coloring; that is, a way to assign the three colors R,G,B to the vertices of G, so that
no edge is monochromatic (i.e. has both endpoints colored the same color.) Call this task
3-colorability. This task is clearly in NP, with a “proof” that a graph is 3-colorable given
by a concrete 3-coloring of said graph.

3SAT is reducible to 3-colorability.

Proof. As before, we will describe a process that takes in any k-clause formula in 3-
conjunctive normal form (i.e. the form that boolean formulas considered in 3SAT take), and
transforms it into a graph on at most linear pkq vertices (specifically, ď 11k ` 3 vertices.)

1

This transformation will take us polynomial time to create; furthermore, this graph will
have a 3-coloring if and only if the corresponding boolean formula is satisfiable. Conse-
quently, we can use any algorithm that can solve the 3-colorability process in time tpnq to
get an algorithm that solves the 3SAT in time polyptpnqq.

We do this as follows. Given our Boolean formula

pl11 _ l12 _ l13q ^ pl21 _ l22 _ l23q ^ . . .^ plk1 _ lk2 _ lk3q,

where each lij is equal to some variable x or its negation x, construct a graph G as follows:

1. The “triforce of truth:” Create a triangle with three vertices. Label one vertex T , a
second F , and the third (?). If we can 3-color our graph, the three vertices of this
triangle must all receive different colors; we will associate the color assigned to T with
“true,” the color assigned to F with “false,” and sincerely hope that (?) doesn’t come
up anywhere else. T

F (?)
2. For each variable x that occurs in a literal in our formula, create two vertices labeled

x, x, and connect these two vertices to each other as well as to the (?) vertex we
defined in step 1.

¬xx
(?)

Notice that this gluing insures that none of these “variable-vertices” can ever be
colored with the same color as the (?) vertex; moreover, we never have both x, x
assigned to the same truth value.

3. Finally, for each clause pli1 _ li2 _ li3q, find the three vertices corresponding to those
literals that we created in step 2, and by adding in 5 new vertices + 10 new edges,
create the following graph linking these vertices to the T vertex from step 1.li1li2li3

T
2

Observations you can make that will take you 5 minutes of casework: it is impossible
for all three of li1, li2, li3 to not have the same color as the T vertex. In other words, in
each clause, at least one variable must be colored with the “true” color. Furthermore,
if there is at least one literal with the “true” color, there is always a way to color the
five intermediate vertices above without creating any conflicts.

By construction, colorings of this graph correspond precisely to ways to assign truth
values to our formula (via 2) that satisfy our formula (via 3). Therefore, if we have an
algorithm that can determine whether a graph is 3-colorable, we can use this construction
to adapt this algorithm to solve instances of 3SAT! In other words, we have reduced the
problem of 3SAT to that of 3-colorability, as desired.

In the following section, we start to explore the concept of reducibility in more depth:

2 NP-Completeness and Cook-Levin

Definition. A problem L is called NP-hard if any problem in NP can be reduced to L.
A problem L is called NP-complete if it is both NP-hard and in NP.

The existence of a NP-complete problem should be surprising at first; the class NP is
staggeringly huge, so it seems odd that (in a sense) every problem in NP can be reduced
down to one sort of “all-problem,” that contains all of the other problems.

With the right perspective, though, it turns out that this is actually remarkably trivial.
First: to do any reasoning about computation, we need to fix a model of computation
itself! There are many such models we could pick out: Turing machines, Lambda calculus,
recursive functions, In practice, it doesn’t matter too much which model you pick; if the
Church-Turing thesis holds, most any notion you pick to work in will give you equivalently
powerful notions of what your algorithms can “do.”

For this class, the formal notion of computability we will work with is perhaps one of
the most intuitive that exists, if you’re trying to capture what a computer can and cannot
do: circuits! Consider the following definition:

Definition. A circuit is a directed acyclic graph with the following kinds of labeled ver-
tices:

1. Input vertices: vertices with indegree 0, labeled with distinct variable symbols (i.e.
x1, x2, . . .q

2. AND vertices: vertices with indegree 2 and outdegree 1, all labeled with the same ^
symbol.

3. OR vertices: vertices with indegree 2 and outdegree 1, all labeled with the same _
symbol.

4. NOT vertices: vertices with indegree 1 and outdegree 1, all labeled with the same
symbol.

5. The output vertex: a single vertex with indegree 1 and outdegree 0.

3

The size of any circuit is simply the number of vertices in this circuit.

Here is a sample circuit of size 8: ∧∧
∧

¬
¬x2

x1
Any circuit has a corresponding boolean expression, and thus corresponds to some func-

tion t0, 1un Ñ t0, 1u. For example, the circuit above corresponds to the boolean function
XOR, that takes in two variables and outputs true if they disagree, and false otherwise.

In general, any boolean function from t0, 1un Ñ t0, 1u can be expressed as some cor-
responding circuit; on the homework you’re asked to show that this is true! (In fact, any
boolean function from t0, 1un Ñ t0, 1u can be expressed as a circuit with at most Op2n{nq
vertices! Moreover, almost any boolean function needs that many vertices to be so ex-
pressed. By way of contrast, we have yet to actually find any boolean functions that need
anything more than polypnq vertices to be expressed, which is deeply strange / one of the
more interesting open questions in this field!)

This is going to be our model of computation! This is a little odd, though, in that
circuits all take in inputs of fixed length. I.e. the XOR gate above takes in only two inputs;
it’s not obvious how we’d extend it to more inputs by just looking at it!

Consequently, what we want isn’t simply circuits: it’s circuit families.

Definition. A circuit family is a collection tCnunPN of circuits, such that each Cn has n
input vertices.

Definition. An algorithm A is simply some family of circuits tCnunPN. We interpret A
applied to an input px1, . . . xnq P t0, 1u

n as just Cn with these xi’s as inputs.

With this notion of algorithm established, the Cook-Levin theorem is actually fairly
trivial:

Theorem. (Cook-Levin) There is an NP-complete problem. In particular, consider Circuit-
SAT, which is the task of determining whether a given circuit of size n can be made to output
true; this problem is NP-complete.

Proof. Circuit-SAT is equivalent to SAT (as we’re just linking variables via AND, OR and
NOT’s), and thus is in NP. So it suffices to prove that Circuit-SAT is NP-hard: i.e. that we
can reduce any problem in NP to Circuit-SAT.

To do this, let’s revisit what it means for a problem to be in NP. Originally, we made
the following definition:

Definition. A problem L is in NP if there is a polynomial-time algorithm Apx, uq, that
takes in instances x of L along with claimed “proofs” u that x holds, and outputs T if that
“proof” demonstrates that x has a yes answer in L. In other words,

x has a yes answer in Lô Du,Apx, uq “ T.

4

Moreover, notice that there is some polynomial p such that the length of u is less than
pplengthpxqq. This is because if L is a polynomial-time algorithm that uses u, its runtime is
an upper bound on the total length of whatever proof L needs to read to perform its work.

If we change the language here to that of circuits, we have the following:

Definition. A problem L is in NP if there is a circuit family tCnunPN that takes in in-
stances x of L along with claimed “proofs” u that x holds, and outputs T if that “proof”
demonstrates that x has a yes answer in L. In other words,

px has a yes answer in Lq ô pDu with lengthpuq ă pplengthpxq such that Cnpx, uq “ T q.

Given any NP-complete problem L, instance x of L, and corresponding polynomial-time
proof-checking circuit family tCnu, consider the circuit family tCn

ˇ

ˇ

x
unPN, formed by taking

the circuits Cn and “fixing” their instance inputs to the instance x. These are now circuits
that take in possible proofs u of the instance x and output either true or false depending
on whether or not u actually corresponds to a proof.

Also, notice that because the circuits tCnunPN can be evaluated in polynomial time, they
must have polynomial size as well (as otherwise it would take too long to evaluate these
circuits!)

By our comments above, there is some polynomial pplengthpxqq such that if any such u
exists, it has length ď pplengthpxqq.

Therefore, to determine whether the instance x of our problem L evaluates to true, it

suffices to simply solve the Circuit-SAT problem for all of the circuits tCn

ˇ

ˇ

x
u
pplengthpxqq
n“1 .

There are polynomially many of these circuits; consequently, any algorithm that can solve
an instance of Circuit-SAT of length n in time tpnq can determine whether the instance x
of our problem L evaluates to true in time qptpnqq, for some polynomial q.

In other words, we’ve reduced the problem L to Circuit-SAT, for any problem L in NP.

Cool! So there is a NP-complete problem. If you do the homework (where you’re
asked to show that SAT reduces to 3SAT,) then we’ve actually found several NP-complete
problems: Circuit-SAT, SAT, 3SAT, k-independent set, and 3-colorability! In tomorrow’s
class, we’ll begin to examine the NP-complete problems this class really cares about – those
involving Latin squares!

5

	Reductions
	NP-Completeness and Cook-Levin

