NP and Latin Squares	Instructor: Padraic Bartlett
Homework 4: Latin Squares and NP-Completeness	
Week 4	Mathcamp 2014

Homework Problems.

1. Prove the following claim made in class: the graphs $H_{n, m}$ are tripartite whenever n, m are multiples of 3 .
2. Similarly, prove that whenever $H_{n, m}$ is tripartite, all three of its parts are the same size.
3. As well, prove that the graphs $H_{n, m}$ are uniform - in other words, given any vertex v in a part V_{i} of these tripartite graphs, the number of edges from this vertex to the $i+1$-th part of our graph is the same as the number of edges from this vertex to the $i-1$-th part of our graph. (I.e. $\operatorname{deg}_{i+1}(v)=\operatorname{deg}_{i-1}(v)$).
4. Finally, show that properties 1-3 are preserved under the gluings we defined in class, and thus hold for the graphs we created that correspond to instances of 3SAT.
5. Find the actual runtime, as a polynomial in n, of completing a partial Latin rectangle. Is it $O\left(n^{2}\right), O\left(n^{3}\right)$, or greater?
6. Prove Ryser's theorem:

Theorem. (Ryser, 1951.) Suppose that P is a $n \times n$ partial latin square with the following properties:

- There is a set of r rows named R, and a set of c columns named C, such that a cell (i, j) is not blank iff $i \in R$ and $j \in C$.
- If $N(k)$ denotes the total number of times the symbol k is used in our entire square, then $N(k) \geq r+c-n$.

Hint: this is basically like our Latin rectangles result, but weirder. Try expanding row-by-row to a Latin rectangle, and then using the fact that we know how to complete Latin rectangles!

