NP and Latin Squares

Homework 3: Triangulations and NP-Completeness

Week 4

Mathcamp 2014

Homework Problems.

- 1. (a) Prove that if a graph G has each of its vertices with odd degree, then G does not admit a triangulation.
 - (b) Prove that if the number of edges in G is not divisible by 3, then G does not admit a triangulation.
 - (c) Find a graph G where every vertex has even degree and the number of edges is a multiple of 3, but G does not admit a triangulation.
 - (d) (Open!) Find a value of ϵ such that any graph on n vertices with minimum degree $(1 \epsilon)n$ that satisfies properties (a) and (b) admits a triangulation. (Conjectured bound is 1/4 here.)
- 2. Find a complete graph K_n such that
 - K_n is decomposable into triangles, and
 - $\bullet \ n>3.$
- 3. Show that if n is congruent to 1 or 3 mod 6, then K_n admits a decomposition into triangles.
- 4. A 4-cycle decomposition is basically a triangle decomposition, except with squares (i.e. 4-cycles): i.e. it is a way to break the edges of a graph into disjoint subsets, each one of which forms a 4-cycle.
 - (a) Explain why if a graph has a 4-cycle decomposition, the degree of every vertex must be even and the number of edges must be a multiple of 4.
 - (b) Find a graph that has every vertex of even degree and its number of edges a multiple of 4, but does not have a 4-cycle decomposition.
 - (c) Find a complete graph K_n that has a 4-cycle decomposition.
- 5. Generalize problem 3: for any m, find a n such that K_n has a m-cycle decomposition.