NP and Latin Squares	Instructor: Padraic Bartlett
Homework 3: Triangulations and NP-Completeness	
Week 4	Mathcamp 2014

Homework Problems.

1. (a) Prove that if a graph G has each of its vertices with odd degree, then G does not admit a triangulation.
(b) Prove that if the number of edges in G is not divisible by 3 , then G does not admit a triangulation.
(c) Find a graph G where every vertex has even degree and the number of edges is a multiple of 3 , but G does not admit a triangulation.
(d) (Open!) Find a value of ϵ such that any graph on n vertices with minimum degree $(1-\epsilon) n$ that satisfies properties (a) and (b) admits a triangulation. (Conjectured bound is $1 / 4$ here.)
2. Find a complete graph K_{n} such that

- K_{n} is decomposable into triangles, and
- $n>3$.

3. Show that if n is congruent to 1 or $3 \bmod 6$, then K_{n} admits a decomposition into triangles.
4. A 4-cycle decomposition is basically a triangle decomposition, except with squares (i.e. 4 -cycles): i.e. it is a way to break the edges of a graph into disjoint subsets, each one of which forms a 4 -cycle.
(a) Explain why if a graph has a 4-cycle decomposition, the degree of every vertex must be even and the number of edges must be a multiple of 4 .
(b) Find a graph that has every vertex of even degree and its number of edges a multiple of 4 , but does not have a 4 -cycle decomposition.
(c) Find a complete graph K_{n} that has a 4-cycle decomposition.
5. Generalize problem 3: for any m, find a n such that K_{n} has a m-cycle decomposition.
